This module, part of the `abstract_essentials` package, provides a collection of utility functions for working with images and PDFs, including loading and saving images, extracting text from images, capturing screenshots, processing PDFs, and more.
Project description
abstract_images
Module - Image and PDF Utilities
Part of the abstract_essentials
Package
GitHub Repository: abstract_essentials
Contact Email: partners@abstractendeavors.com
Date: 08/27/2023
Version: 0.0.0.1
This module, part of the abstract_essentials
package, provides a collection of utility functions for working with images and PDFs, including loading and saving images, extracting text from images, capturing screenshots, processing PDFs, and more.
Image Utilities - image_utils.py
The image_utils.py
module contains functions for image-related operations.
Paths to Image Data:
- get_dimensions(image_path: str): Return dimensions (height, width) of the image.
- img_to_str(image_path: str): Convert image to text using pytesseract.
- get_pix(image_path: str): Return pixel data of the image.
- image_to_bytes(image_path: str, format: str = "PNG"): Convert an image to bytes.
- get_pixel_data(image_path: str): Get pixel data from the image and save the resultant image.
- open_image(image_path: str): Open and return the image using PIL.
- read_image(image_path: str): Read image using OpenCV and return it as a numpy array.
Paths to Save:
- save_url_img(url: str , image_path:str, format: str = "PNG"): Download an image from URL and save it.
- screenshot(image_path: str = "screenshot.png"): Take a screenshot and save it.
- save_image(image:Union[Image.Image, ndarray], image_path:str,format:str="PNG"): Save an image to the specified path.
Data to Image:
- get_image_bytes(image_data: bytes): Convert image data in bytes format to a BytesIO stream.
- pix_to_img(pixel_data: List[List[Tuple[int, int, int]]], image_path: str = "image.png"): Convert pixel data to an image and save it.
- show_image(image: Union[Image.Image, ndarray]): Display an image.
PDF Utilities - pdf_utils.py
The pdf_utils.py
module provides functions for PDF processing.
Function Descriptions:
if_none_return(obj, obj_2)
: Return primary object if secondary object isNone
.write_pdf()
: Initialize and return a new PDF writer object.read_pdf(file)
: Read a PDF from a given path and return a PDF reader object.is_pdf_path(file)
: Check if a file path corresponds to a valid PDF file.get_pdf_obj(pdf_obj)
: Process a PDF object or file path and return its content.split_pdf(input_path, output_folder, file_name)
: Split a PDF file into separate pages.pdf_to_img_list(pdf_list, output_folder, file_name, paginate, extension)
: Convert PDF files into images.img_to_txt_list(img_list, output_folder, file_name, paginate, extension)
: Convert images to text using OCR.open_pdf_file(pdf_file_path)
: Open a PDF file using the default system application.image_to_text(image_path)
: Convert an image to text using Tesseract OCR.get_pdfs_in_directory(directory)
: Get a list of PDF filenames in a directory.get_all_pdf_in_directory(file_directory)
: Get full paths of all PDFs in a directory.collate_pdfs(pdf_list, output_pdf_path)
: Merge a list of PDFs into one.
Example Usage:
To showcase the pdf_utils
module, here's an example combining several utility functions:
from abstract_images.pdf_utils import (
get_file_name, get_directory, mkdirs, split_pdf,
pdf_to_img_list, img_to_txt_list
)
pdf_path = "path_to_pdf"
file_name = get_file_name(pdf_path)
directory = get_directory(pdf_path)
pdf_folder = mkdirs(os.path.join(directory, file_name))
pdf_split_folder = mkdirs(os.path.join(pdf_folder, "split"))
pdf_list = split_pdf(input_path=pdf_path, output_folder=pdf_split_folder, file_name=file_name)
pdf_Image_folder = mkdirs(os.path.join(pdf_folder, "images"))
img_list = pdf_to_img_list(pdf_list=pdf_list, output_folder=pdf_Image_folder, paginate=False, extension="png")
pdf_Text_folder = mkdirs(os.path.join(pdf_folder, "text"))
text_list = img_to_txt_list(img_list=img_list, output_folder=pdf_Text_folder, paginate=False, extension="txt")
Note:
For queries, bug reports, or feature requests, please raise an issue on the GitHub repository or contact us through the provided email: partners@abstractendeavors.com. Ensure that you have the required dependencies installed, and for OCR operations, ensure Tesseract is properly set up and its path is correctly specified.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file abstract_images-0.0.0.5-py3-none-any.whl
.
File metadata
- Download URL: abstract_images-0.0.0.5-py3-none-any.whl
- Upload date:
- Size: 16.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 60b831060332bca0a74038803db0b16898d2db1b0556938cd0a6c29ae1a54c9f |
|
MD5 | 334071ae41a42fbe609897976fb42520 |
|
BLAKE2b-256 | a00c097b7ec51ba2e3e80d7e74a85a2a5130a04cd41d4f6f3626b186a5850222 |