Skip to main content

Accelerated Bregman proximal gradient (ABPG) methods

Project description

Accelerated Bregman Proximal Gradient Methods

A Python package of accelerated first-order algorithms for solving relatively-smooth convex optimization problems

minimize { f(x) + P(x) | x in C }

with a reference function h(x), where C is a closed convex set and

  • h(x) is convex and essentially smooth on C;
  • f(x) is convex and differentiable, and L-smooth relative to h(x), that is, f(x)-L*h(x) is convex;
  • P(x) is convex and closed (lower semi-continuous).

Implemented algorithms in HRX2018:

  • BPG(Bregman proximal gradient) method with line search option
  • ABPG (Accelerated BPG) method
  • ABPG-expo (ABPG with exponent adaption)
  • ABPG-gain (ABPG with gain adaption)
  • ABDA (Accelerated Bregman dual averaging) method

Additional algorithms for solving D-Optimal Experiment Design problems:

  • D_opt_FW (basic Frank-Wolfe method)
  • D_opt_FW_away (Frank-Wolfe method with away steps)


Clone or fork from GitHub. Or install from PyPI:

pip install accbpg


Example: generate a random instance of D-optimal design problem and solve it using two different methods.

import accbpg

# generate a random instance of D-optimal design problem of size 80 by 200
f, h, L, x0 = accbpg.D_opt_design(80, 200)

# solve the problem instance using BPG with line search
x1, F1, G1, T1 = accbpg.BPG(f, h, L, x0, maxitrs=1000, verbskip=100)

# solve it again using ABPG with gamma=2
x2, F2, G2, T2 = accbpg.ABPG(f, h, L, x0, gamma=2, maxitrs=1000, verbskip=100)

# solve it again using adaptive variant of ABPG with gamma=2
x3, F3, G3, _, _, T3 = accbpg.ABPG_gain(f, h, L, x0, gamma=2, maxitrs=1000, verbskip=100)

D-optimal experiment design problems can be constructed from files (LIBSVM format) directly using

f, h, L, X0 = accbpg.D_opt_libsvm(filename)

All algorithms can work with customized functions f(x) and h(x), and an example is given in this Python file.

Additional examples

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for accbpg, version 0.2
Filename, size File type Python version Upload date Hashes
Filename, size accbpg-0.2-py3-none-any.whl (18.3 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size accbpg-0.2.tar.gz (15.1 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page