Faster loops for NumPy using multithreading and other tricks
Project description
numpy-threading-extensions
Faster loops for NumPy using multithreading and other tricks. The first release will target NumPy binary and unary ufuncs. Eventually we will enable overriding other NumPy functions, and provide an C-based (non-Python) API for extending via third-party functions.
Installation
pip install accelerated_numpy
You can also install the in-development version 0.0.1 with:
pip install https://github.com/Quansight/numpy-threading-extensions/archive/v0.0.1.zip
or latest with
pip install https://github.com/Quansight/numpy-threading-extensions/archive/main.zip
Documentation
To use the project:
import accelerated_numpy
accelerated_numpy.initialize()
Development
To run all the tests run::
tox
Note, to combine the coverage data from all the tox environments run:
OS | Command |
---|---|
Windows | set PYTEST_ADDOPTS=--cov-append |
tox |
|
Other | PYTEST_ADDOPTS=--cov-append tox |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
accelerated-numpy-0.1.0.tar.gz
(76.7 kB
view hashes)
Built Distributions
Close
Hashes for accelerated_numpy-0.1.0-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9ad4dbf6d4b311801c378f192586c54ec4db559cbb88ae4b58421458603ad0ae |
|
MD5 | 444e4f5fa1557ea210429f4f67b99695 |
|
BLAKE2b-256 | 96f4b886598205ce0134d7068ca29147c9826097e59097037f00096b9dd4bf4e |
Close
Hashes for accelerated_numpy-0.1.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ac2b565169f60e4cc3783a88b1d3cd6b7254eb911692e6eb955b8524596a86fe |
|
MD5 | 50d488ec91d698229f06004d434cd5ac |
|
BLAKE2b-256 | e11b8fb1f3b9fd34d1606f1a1b87cfd852a0643fbded444a1942f771e2cd4ef7 |
Close
Hashes for accelerated_numpy-0.1.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8b71ebc9b238d6ee14fa8c153c1bfcc60bfb63545b9b73e18e752d6c1bf0c05e |
|
MD5 | 00be15e61b96c31bfbeb339f9b956055 |
|
BLAKE2b-256 | ceda3785ad6f384330d6d7c4593487a0e186fe043c6436dacb122e9d7f88e00d |
Close
Hashes for accelerated_numpy-0.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 08e1534491bafd6104969b796f0dbeb480f4de1fc74b8dba74a2029882696a52 |
|
MD5 | a1dc58c27615be11199e504747c238b8 |
|
BLAKE2b-256 | 44cdf9596f595a8200a4ebacca336859a1fdae51bac3f98813278949e90b5d89 |
Close
Hashes for accelerated_numpy-0.1.0-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8f5be63f40b434026255c15b1d2acbe9eab446bdfae8451c24b4ee20bc47f632 |
|
MD5 | 7276bb1a7c3c0a206c41047c5faefa96 |
|
BLAKE2b-256 | 071fa12587ce1bd8204433d799609c2de096fbbe5897cca2942e47f822aa7b7c |
Close
Hashes for accelerated_numpy-0.1.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 044a7fe5a26e936d81d52b281a7ae7715256c937ab22f99adef2e5633a4f30b0 |
|
MD5 | 9f64cfd1c2990cd05554d64c15f88b1f |
|
BLAKE2b-256 | 3f202573a70bf77c2cb0b830d3a25ef4d164c614c0f080773538531ebcc4cbc4 |
Close
Hashes for accelerated_numpy-0.1.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c05cc071eee9ce528dfa9b06ddd9d464f173a5f3136beadaaa4fb6e7e510fa5f |
|
MD5 | d15d1b178dd49e40b30afb5a997f5a9a |
|
BLAKE2b-256 | 9ac34d2d61904feacd5564b6643687122b01930bdb9dfb3c801e0c8ffc3f62ae |
Close
Hashes for accelerated_numpy-0.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 43fc701523522a8c5500bf88edc5f99ef54405e6558183b8851a99d1833be4c5 |
|
MD5 | 5131059b55ab1b0bf1245dcd1b7e8b48 |
|
BLAKE2b-256 | 526c85f90cbe5725c27cce80a609252d544d80f5b8d15adfb7e0bc5ccd081849 |
Close
Hashes for accelerated_numpy-0.1.0-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | db4a13a8c56ae4671629cac1611eca9245b2e1d28b1099cac3acf278acab8035 |
|
MD5 | 6de95920b30b7c9c70a1b540123d46a1 |
|
BLAKE2b-256 | eea3b736c70282a220eb548f49f68faa297838d4876e8c64c55e7d1bbdfc4575 |
Close
Hashes for accelerated_numpy-0.1.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bf1cb5191e5a7e62a5a8e7c30d66aa8d04b9db9ee5c26e70c02c164618b91dd5 |
|
MD5 | 4c9f38254b73604c5bae9a6ccb519a1b |
|
BLAKE2b-256 | e18173ae050a6472596368acada1be392b45714968a065767cb95a18026a56dd |
Close
Hashes for accelerated_numpy-0.1.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 56d7281a3a5979003f5474f31c7856d930576a85d79c0027121cf6748cd3488a |
|
MD5 | 7b26c7879fc5d283b1b4997bee602f2e |
|
BLAKE2b-256 | 91dd6d829adf835f3893eed0d317612b41da1491c8294df4adc8439dedb2d915 |
Close
Hashes for accelerated_numpy-0.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4f488d7628aa0c234c64f8a593e3c93f211fce36caa32feb8d004e4814a695b3 |
|
MD5 | 93b9eb0eeb5fd8b5a9b65849217bdafb |
|
BLAKE2b-256 | 4bd31fe9b56b609cf91f0929986fc4c129cbe451abd0cd61a12f0ba12ce4154b |