Lightweight recommender engine
Project description
Acf
A lightweight recommender engine for implicit feedback datasets
The package implements an algorithm described in Collaborative Filtering for Implicit Feedback Datasets paper. The algorithm is based on the following ideas:
- using collaborative filtering with latent factors
- transforming feedback observations into binary preferences with associated confidence levels
- using alternating least sqaures to compute the matrix factorization
Install
The package requires Python 3.7
or newer, the only dependencies are
numpy
and pandas
. To install it, run
pip install acf
Usage
The following example shows how to train a model and compute predictions.
import acf
import pandas as pd
# assuming the data are in the following format:
# | user_id | item_id | feedback |
# |---------|---------|----------|
# | 2491 | 129 | 2 |
interactions = pd.read_csv('interactions.csv')
engine = acf.Engine(reg_lambda=1, alpha=35, n_factors=2, random_state=0)
engine.fit(interactions,
user_column='user_id',
item_column='item_id',
feedback_column='feedback',
n_iter=20,
n_jobs=4)
# get the best 20 recommendations
prediction = engine.predict(user=2491, top_n=20)
# to print training loss value at every iteration
print(engine.loss)
Model Evaluation
For performance evaluation, the package offers metrics.mean_rank
function that implements "mean rank" metric as defined by equation
8 in the paper.
The metric is a weighted mean of percentile-ranked recommendations
(rank_ui = 0
says that item i
is the first to be recommended for
user u
and item j
with rank_uj = 1
is the last to be recommended)
where the weights are the actual feedback values from R
user-item matrix.
interactions_test = pd.read_csv('intercations_test.csv')
print(acf.metrics.mean_rank(interactions=interactions_test,
user_column='user_id',
item_column='item_id'
feedback_column='feedback',
engine=engine))
Model Persistence
Trained model can be serialized and stored using joblib
or pickle
.
To store a model:
with open('engine.joblib', 'wb') as f:
joblib.dump(engine, f)
To load a model:
with open('engine.joblib', 'rb') as f:
engine = joblib.load(f)
Public API
acf.Engine
acf.core.computation.Engine(reg_lambda=0.1, alpha=40,
n_factors=10, random_state=None):
Class exposing the recommender.
reg_lambda
: regularization strengthalpha
: gain parameter in feedback-confidence transformationc_ui = 1 + alpha * r_ui
n_factors
: number of latent factorsrandom_state
: initial RNG state
Properties:
user_factors
: user factor matrixitem_factors
: item factor matrixloss
: training loss history
Methods:
Engine.fit(interactions, user_column, item_column,
feedback_column, n_iter=20, n_jobs=1)
Trains the model.
interactions
: dataframe containing user-item feedbacksuser_column
: name of the column containing user idsitem_column
: name of the column containing item idsfeedback_column
: name of the column containing feedback valuesn_iter
: number of alternating least squares iterationn_jobs
: number of parallel jobs
Engine.predict(user, top_n=None)
Predicts the recommendation.
user
: user identification for whom the prediction is computedtop_n
: if notNone
, only the besr n items are included in the result
Returns: predicted recommendation score for each item as pandas.Series
acf.metrics.mean_rank
acf.core.metrics.mean_rank(interactions, user_column, item_column,
feedback_column, engine)
Computes mean rank evaluation.
interactions
: dataframe containing user-item feedbacksuser_column
: name of the column containing user idsitem_column
: name of the column containing item idsfeedback_column
: name of the column containing feedback valuesengine
: trainedacf.Engine
instance
Returns: computed value
Tests
Tests can be executed by pytest
as
python -m pytest acf/tests
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file acf-0.2.3.tar.gz
.
File metadata
- Download URL: acf-0.2.3.tar.gz
- Upload date:
- Size: 13.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 60ca033e988736728c2d95051f42b09ae4625030fec1aab7d8c32eb27a0d7880 |
|
MD5 | de049a98e004f16c0d6b58c1eccc86f0 |
|
BLAKE2b-256 | 7c1e07a8e5fddc23aad5b7d735ded9a937bbe7a694ad70602bfc65a8e266c012 |
File details
Details for the file acf-0.2.3-py3-none-any.whl
.
File metadata
- Download URL: acf-0.2.3-py3-none-any.whl
- Upload date:
- Size: 16.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7b752efd531ea636344183b8c631e558040413a72950f48e587727e6c8a6f405 |
|
MD5 | feb6bf81cbdf77676272c2892e83124f |
|
BLAKE2b-256 | c4741a4e70c2e9a5e08f1e731c8f8580c1101af23845b2e295f4ed4ff2b985d2 |