Skip to main content

A Python library for kernels used in analytical chemistry

Project description

ackl

Publication

Analytical chemistry kernel library for spectroscopic profiling data, Food Chemistry Advances, Volume 3, 2023, 100342, ISSN 2772-753X, https://doi.org/10.1016/j.focha.2023.100342.

PyPI (Python Package Index) repository

https://pypi.org/project/ackl/

Reproducible Code-Ocean capsule

https://doi.org/10.24433/CO.4614220.v2

Install (Ubuntu Env Setup)

!apt-get install r-base r-base-dev ffmpeg libsm6 libxext6 

!pip install rpy2
!pip install qsi==0.3.9
!pip install ackl==1.0.2
!pip install cla==1.1.4
!pip install opencv-python

# Post-install script

#!/usr/bin/env bash
set -e

Rscript -e 'install.packages("ECoL")'

Compile

python -m build

Use

Kernel Response Patterns

import ackl.metrics
ackl.metrics.linear_response_pattern(20)

Run Kernels on Target Dataset

_, dics, _ = ackl.metrics.classify_with_kernels(X, y,embed_title = False)

Show the result as HTML table and bar charts:

html_str = ackl.metrics.visualize_metric_dicts(dics, plot = True)
display(HTML( html_str ))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

ackl-2.1.0-py3-none-any.whl (772.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page