Skip to main content

Convert YAMLized pandas DataFrame to Seaborn clustermap

Project description

The aclustermap package takes a YAMLized pandas DataFrame as input, with optional formatting keywords, and outputs a Seaborn clustermap .png image:

cat example.yaml | aclustermap > example.png

If YAMLizing a pandas DataFrame is a new concept, here is a quick tutorial.

Let's create a Python module generate_example.py

import pandas, yaml;

# Generate random data with make_blobs to yield interesting clustering behavior
from sklearn.datasets import make_blobs; 
example = pandas.DataFrame(make_blobs(n_samples=36, centers=3, n_features=10)[0])

# Convert the DataFrame to a dict
df_dict = example.to_dict()

# Convert the dataframe to a dict, then YAMLize the dict
yml = yaml.dump(df_dict)

# Print to stdout
print(yml)

Here is a one-liner that combines the previous code to generate this dataframe, safe it to a file, and then output it as a clustermap to example.png:

python generate_example.py > example.yaml
cat example.yaml | aclustermap > example.png

Saving the dataframe to a file is not necessary, as it can be piped directly to aclustermap:

python generate_example.py | aclustermap > example.png

aclustermap uses the simplest possible way to tweak the visualization, which is to pass a second YAML dict containing keyword argumnets for seaborn.clustermap and see also, seaborn.set_context, pyplot.setp with the Artist being the clustermap's xticklabels or yticklabels, or pyplot.rcParams.

The formatting must be enclosed in a dict labeled according to the function it applies to. Here is the default formatting, which will be used if no formatting is specified. Otherwise, simply cat a YAMLized nested dictionary with a structure similar to the following.

format:
  seaborn:
    clustermap:
      cmap: CET_CBL1
      annot: true
    set_context:
      context: notebook
  pyplot:
    setp:
      xticklabels:
        rotation: 0
      yticklabels:
        rotation: 0
    rcParams:
      font.size: 12

A convenient way to specify minor formatting tweaks directly at the command line is with a HereDoc:

(python generate_example.py; cat <<EOF) | python -m aclustermap > example.png
format:
  seaborn:
    clustermap:
      annot: false

EOF

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aclustermap-0.1.7.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

aclustermap-0.1.7-py3-none-any.whl (5.1 kB view details)

Uploaded Python 3

File details

Details for the file aclustermap-0.1.7.tar.gz.

File metadata

  • Download URL: aclustermap-0.1.7.tar.gz
  • Upload date:
  • Size: 3.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for aclustermap-0.1.7.tar.gz
Algorithm Hash digest
SHA256 a1b448c00fd46414d5537f63f933101d8ba39e014cdaf8ef950423e23447ae93
MD5 c41714bb50d6ce769b9ca9f847e6421c
BLAKE2b-256 5909497b5189d0fd98d01f78a6312d1b427755613de2b78003a19676c69d951e

See more details on using hashes here.

File details

Details for the file aclustermap-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: aclustermap-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 5.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for aclustermap-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 ad42c8e42f36520f7c031670810c9e3a1316dd6a8b1b6770c61513c38eb3cd1a
MD5 e1d2794790e4540d28dffb58f6097998
BLAKE2b-256 a4c59064d7ceb5c0d45d0f428334d0ee9dc75bfc52b41e74ded72aee3b6d965a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page