Skip to main content

Pipeline for the ACQDIV database

Project description

ACQDIV

DOI PyPI version

CircleCI

This repository contains the code and configuration files for transforming the child language acquisition corpora into the ACQDIV database.

Publication

If you use the database in your reasearch, please cite as follows:

Jancso, Anna, Steven Moran, and Sabine Stoll.
"The ACQDIV Corpus Database and Aggregation Pipeline."
Proceedings of The 12th Language Resources and Evaluation Conference. 2020.

Link to Paper

Resources

Download the ACQDIV database (only public corpora):

DOI

To request access to the full database including the private corpora (for research purposes only!), please refer to Sabine Stoll. In case of technical questions, please open an issue on this repository.


Corpora

Our full database consists of the following corpora:

Corpus ISO Public # Words
Chintang Language Corpus ctn no 987'673
Cree Child Language Acquisition Study (CCLAS) Corpus cre yes 44'751
English Manchester Corpus eng yes 2'016'043
MPI-EVA Jakarta Child Language Database ind yes 2'489'329
Allen Inuktitut Child Language Corpus ike no 71'191
MiiPro Japanese Corpus jpn yes 1'011'670
Miyata Japanese Corpus jpn yes 373'021
Ku Waru Child Language Socialization Study mux yes 65'723
Sarvasy Nungon Corpus yuw yes 19'659
Qaqet Child Language Documentation byx no 56'239
Stoll Russian Corpus rus no 2'029'704
Demuth Sesotho Corpus sot yes 177'963
Tuatschin Corpus roh no 118'310
Koç University Longitudinal Language Development Database tur no 1'120'077
Pfeiler Yucatec Child Language Corpus yua no 262'382
Total 10'843'735

Running the pipeline

For Windows users, follow the installation/run instructions here: https://github.com/acqdiv/acqdiv/wiki/Installation-Run-instructions-for-Windows

For Mac and Linux user, continue here to run the pipeline yourself:

Install the package

Create a virtual environment [optional]:

python3 -m venv venv
source venv/bin/activate

You can install the package from PyPI or directly from source:

PyPI

pip install acqdiv

From source

# Clone Repository
git clone git@github.com:acqdiv/acqdiv.git
cd acqdiv

# Install package (for users!)
pip install .

# Developer mode (for developers!)
pip install -r requirements.txt

Get the corpora

Run the following script to download the public corpora:

python util/download_public_corpora.py

The corpora are in the folder corpora.

For the private corpora, either place the session files in corpora/<corpus_name>/{cha|toolbox}/ and the metadata files (only Toolbox corpora) in corpora/<corpus_name>/imdi/ or edit the paths to those files in the config.ini (also see below).

Generate the database

Get the configuration file src/acqdiv/config.ini and specify the absolute paths (without trailing slashes) for the corpora directory (corpora_dir) and the directory where the database should be written to (db_dir):

[.global]
# directory containing corpora
corpora_dir = /absolute/path/to/corpora/dir
# directory where the database is written to
db_dir = /absolute/path/to/database/dir
...

Optionally adapt the paths for the individual corpora (sessions and metadata_dir).

Run the pipeline specifying the absolute path to the configuration file:
acqdiv load -c /absolute/path/to/config.ini

Generate the R object

Install dependencies

$ R
> install.packages("RSQLite")
> install.packages("rlang")

Navigate to src/acqdiv/database and run:

Rscript sqlite_to_r.R /absolute/path/to/sqlite-DB

Run tests

Run the unittests:
pytest tests/unittests

Run the integrity tests on the database:
pytest tests/systemtests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

acqdiv-1.1.0.tar.gz (148.8 kB view details)

Uploaded Source

File details

Details for the file acqdiv-1.1.0.tar.gz.

File metadata

  • Download URL: acqdiv-1.1.0.tar.gz
  • Upload date:
  • Size: 148.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.8.5

File hashes

Hashes for acqdiv-1.1.0.tar.gz
Algorithm Hash digest
SHA256 8ca05d0058cc04e9fbae16b9df244c851dbf87b483d97d2e500874c8851d643a
MD5 ddd74c4f27ae54fd41705e53854d7b32
BLAKE2b-256 e62e50039684b6521d5a8aab314e7687feedd218ecfcb370a6ef0003185e83f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page