acris is a python library of programming patterns that we use, at acrisel, in Python projects and choose to contribute to Python community
Project description
Overview
acris is a python library providing useful programming patterns.
threaded
decorator for methods that can be executed as a thread.
example
from acris import threaded from time import sleep class ThreadedExample(object): @threaded def proc(self, id_, num, stall): s=num while num > 0: print("%s: %s" % (id_, s)) num -= 1 s += stall sleep(stall) print("%s: %s" % (id_, s)) return s class RetVal(object): def __init__(self, name): self.name=name def __call__(self, retval): print(self.name, ':', retval)
example output
te1=ThreadedExample().proc(1, 3, 1) te2=ThreadedExample().proc(2, 3, 5) te1.addCallback(RetVal('te1')) te2.addCallback(RetVal('te2'))
will produce:
1: 3 2: 3 1: 4 1: 5 1: 6 te1 : 6 2: 8 2: 13 2: 18 te2 : 18
Singleton
meta class that creates singleton footprint of classes inheriting from it.
example
from acris import Singleton class Sequence(Singleton): step_id=0 def __call__(self): step_id=self.step_id self.step_id += 1 return step_id
example output
A=Sequence() print('A', A()) print('A', A()) B=Sequence() print('B', B())
will produce:
A 0 A 1 B 2
Sequence
meta class to produce sequences. Sequence allows creating different sequences using name tags.
example
from acris import Sequence A=Sequence('A') print('A', A()) print('A', A()) B=Sequence('B') print('B', B()) A=Sequence('A') print('A', A()) print('A', A()) B=Sequence('B') print('B', B())
example output
A 0 A 1 B 0 A 2 A 3 B 1
TimedSizedRotatingHandler
Use TimedSizedRotatingHandler is combining TimedRotatingFileHandler with RotatingFileHandler. Usage as handler with logging is as defined in Python’s logging how-to
example
import logging # create logger logger = logging.getLogger('simple_example') logger.setLevel(logging.DEBUG) # create console handler and set level to debug ch = logging.TimedRotatingFileHandler() ch.setLevel(logging.DEBUG) # create formatter formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # add formatter to ch ch.setFormatter(formatter) # add ch to logger logger.addHandler(ch) # 'application' code logger.debug('debug message') logger.info('info message') logger.warn('warn message') logger.error('error message') logger.critical('critical message')
MpLogger and LevelBasedFormatter
Multiprocessor logger using QueueListener and QueueHandler It uses TimedSizedRotatingHandler as its logging handler
It also uses acris provided LevelBasedFormatter which facilitate message formats based on record level. LevelBasedFormatter inherent from logging.Formatter and can be used as such in customized logging handlers.
example
Within main process
import logging import time logger=logging.getLogger(__name__) level_formats={logging.DEBUG:"[ %(asctime)s ][ %(levelname)s ][ %(message)s ][ %(module)s.%(funcName)s.%(lineno)d ]", 'default': "[ %(asctime)s ][ %(levelname)s ][ %(message)s ]", } mplogger=MpLogger(logging_level=logging.DEBUG, level_formats=level_formats) mplogger.start() logger.debug("starting sub processes") # running processes logger.debug("joining sub processes") mplogger.stop()
Within individual process
import logging logger=logging.getLogger(__name__) logger.debug("logging from sub process")
Example output
[ 2016-12-06 13:39:56,196 ][ DEBUG ][ starting sub processes ][ mptest.<module>.178 ] [ 2016-12-06 13:39:56,630 ][ INFO ][ proc [2663]: 0/1 - sleep 0.42sec ] [ 2016-12-06 13:39:56,802 ][ INFO ][ proc [2664]: 0/1 - sleep 0.6sec ] [ 2016-12-06 13:39:56,805 ][ DEBUG ][ sub processes completed ][ mptest.<module>.189 ]
Data Types
varies derivative of Python data types
MergeChainedDict
Similar to ChainedDict, but merged the keys and is actually derivative of dict.
a={1:11, 2:22} b={3:33, 4:44} c={1:55, 4:66} d=MergedChainedDict(c, b, a) print(d)
Will output:
{1: 55, 2: 22, 3: 33, 4: 66}
ResourcePool
Resource pool provides program with interface to manager resource pools. This is used as means to funnel processing.
Example
import time from acris import resource_pool as rp from acris import threaded class MyResource(rp.Resource): pass rp1=rp.ResourcePool('RP1', resource_cls=MyResource, policy={'resource_limit': 2, }).load() rp2=rp.ResourcePool('RP2', resource_cls=MyResource, policy={'resource_limit': 1, }).load() @threaded def worker(name, rp): print('%s getting resource' % name) r=rp.get() print('%s doing work (%s)' % (name, repr(r))) time.sleep(4) print('%s returning %s' % (name, repr(r))) rp.put(*r) print("Starting workers") r1=worker('w11', rp1) r2=worker('w21', rp2) r3=worker('w22', rp2) r4=worker('w12', rp1)
Example Output
Starting workers w11 getting resource w11 doing work ([Resource(name:MyResource)]) w21 getting resource w21 doing work ([Resource(name:MyResource)]) w22 getting resource w12 getting resource w12 doing work ([Resource(name:MyResource)]) w12 returning [Resource(name:MyResource)] w11 returning [Resource(name:MyResource)] w21 returning [Resource(name:MyResource)] w22 doing work ([Resource(name:MyResource)]) w22 returning [Resource(name:MyResource)]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.