Autonomous agent for task/action planning and execution
Project description
ActionGraph
ActionGraph is a symbolic AI agent for generating action plans based on preconditions and effects. This is loosely based on STRIPS approach (https://en.wikipedia.org/wiki/Stanford_Research_Institute_Problem_Solver). State variables are modeled as nodes; the actions represent edges/transitions from one state to another. Dijikstra's shortest path algorithm (A* but without the heuristic cost estimate) is used to generate a feasible, lowest cost plan.
Source: https://github.com/bharathra/ACTION_GRAPH
Usage:
from action_graph.agent import Agent
from action_graph.action import Action
class Drive(Action):
effects = {"driving": True}
preconditions = {"has_drivers_license": True, "tank_has_gas": True}
class FillGas(Action):
effects = {"tank_has_gas": True}
preconditions = {"has_car": True}
class RentCar(Action):
effects = {"has_car": True}
cost = 100 # dollars
class BuyCar(Action):
effects = {"has_car": True}
preconditions = {}
cost = 10_000 # dollars
if __name__ == "__main__":
world_state = {"has_car": False, "has_drivers_license": True}
goal_state = {"driving": True}
ai = Agent()
actions = [a(ai) for a in Action.__subclasses__()]
ai.load_actions(actions)
print("Initial State:", world_state)
ai.update_state(world_state)
print("Goal State: ", goal_state)
plan = ai.get_plan(goal_state)
# ai.execute_plan(plan)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
action-graph-1.3.2.tar.gz
(8.7 kB
view hashes)
Built Distribution
Close
Hashes for action_graph-1.3.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f9bc7a359af25362b5e3808746e4377658eeba70fc0e2aa7b58ce8ea30ad6ea3 |
|
MD5 | 0930d8cbb3e48beaa7da9976caac7cee |
|
BLAKE2b-256 | c9dfee25891f5726c94e059b4f1140d785f1f329a4c569a4c49a1bab05b85a97 |