Skip to main content

Action Rules Mining Tool.

Project description

Action-Apriori (Apriori Modified for Action Rules Mining)

License: MIT

Installation

The Action-Apriori script needs the following libraries:

  • itertools (built-in module in python)
  • copy (built-in module in python)
  • collections (built-in module in python)
  • pandas (1.3.4)

The tested Python version is: 3.9.7

The action_apriori function can be called:

import action_rules as ar
import pandas as pd
# Data
transactions = {'Sex': ['M', 'F', 'M', 'M', 'F', 'M', 'F'], 
                'Age': ['Y', 'Y', 'O', 'Y', 'Y', 'O', 'Y'],
                'Class': [1, 1, 2, 2, 1, 1, 2],
                'Embarked': ['S', 'C', 'S', 'C', 'S', 'C', 'C'],
                'Survived': [1, 1, 0, 0, 1, 1, 0],
               }
data = pd.DataFrame.from_dict(transactions)
# Parameters
stable_attributes = ['Sex','Age']
flexible_attributes = ['Class','Embarked']
target = 'Survived'
wanted_change_in_target = [0, 1]
min_stable_attributes = 2
min_flexible_attributes = 1 #min 1
min_unwanted_support = 1
min_unwanted_confidence = 0.5 #min 0.5
min_wanted_support = 2
min_wanted_confidence = 0.5 #min 0.5
# Action Rules Mining
action_rules = ar.action_apriori(
    data, 
    stable_attributes, 
    flexible_attributes, 
    target, 
    wanted_change_in_target,
    min_stable_attributes , 
    min_flexible_attributes, 
    min_unwanted_support, 
    min_unwanted_confidence, 
    min_wanted_support, 
    min_wanted_confidence, 
    True) #verbose
# Print rules
for action_rule in action_rules:
    print(action_rule)
# Print rules with action rules notation
for action_rule in action_rules:
    print(ar.get_ar_notation(action_rule, target))
# Print rules with export notation
print(ar.get_export_notation(action_rules, target))

The output: ation rule with notation:

[(Sex: F)  (Age: Y)  (Class: 2  1)]  [Survived: 0  1], support of undesired part: 1, confidence of undesired part: 1.0, support of desired part: 2, confidence of desired part: 1.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

action_rules-0.0.1.tar.gz (5.8 kB view details)

Uploaded Source

Built Distribution

action_rules-0.0.1-py3-none-any.whl (6.1 kB view details)

Uploaded Python 3

File details

Details for the file action_rules-0.0.1.tar.gz.

File metadata

  • Download URL: action_rules-0.0.1.tar.gz
  • Upload date:
  • Size: 5.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.5

File hashes

Hashes for action_rules-0.0.1.tar.gz
Algorithm Hash digest
SHA256 61a5a8fce1dbd80ee6b5e1b236cc9d1d5df1c7526df1e88484f4edd66742f4de
MD5 705c41d62944f57943cadd744ac94d47
BLAKE2b-256 e3aa52078ea561f4992040ac9f1773446632d01162af6bd46e35c6c72a6037c7

See more details on using hashes here.

File details

Details for the file action_rules-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for action_rules-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 df44b4624041c78e0ae9591d6a14df128b87e01eb72a2d5a23e244829ec9e296
MD5 3cf56c3d412dcf2070c4628d6725b0cf
BLAKE2b-256 f69bd549e5acf6dc3833b9a2ee48bc68b5b693c26610bda6608d4904c32712e7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page