Skip to main content

The package for action rules mining using Action-Apriori (Apriori Modified for Action Rules Mining)..

Project description

Action Rules

pypi python Build Status codecov

The package for action rules mining using Action-Apriori (Apriori Modified for Action Rules Mining).

Installation

pip install action-rules

Features

Action Rules API

# Import Module
from action_rules import ActionRules
import pandas as pd

# Get Data
transactions = {'Sex': ['M', 'F', 'M', 'M', 'F', 'M', 'F'],
                'Age': ['Y', 'Y', 'O', 'Y', 'Y', 'O', 'Y'],
                'Class': [1, 1, 2, 2, 1, 1, 2],
                'Embarked': ['S', 'C', 'S', 'C', 'S', 'C', 'C'],
                'Survived': [1, 1, 0, 0, 1, 1, 0],
                }
data = pd.DataFrame.from_dict(transactions)
# Initialize ActionRules Miner with Parameters
stable_attributes = ['Age', 'Sex']
flexible_attributes = ['Embarked', 'Class']
target = 'Survived'
min_stable_attributes = 2
min_flexible_attributes = 1  # min 1
min_undesired_support = 1
min_undesired_confidence = 0.5  # min 0.5
min_desired_support = 1
min_desired_confidence = 0.5  # min 0.5
undesired_state = '0'
desired_state = '1'
# Action Rules Mining
action_rules = ActionRules(min_stable_attributes, min_flexible_attributes, min_undesired_support,
                           min_undesired_confidence, min_desired_support, min_desired_confidence, verbose=False)
# Fit
action_rules.fit(
    data,
    stable_attributes,
    flexible_attributes,
    target,
    undesired_state,
    desired_state,
)
# Print rules
for action_rule in action_rules.get_rules().get_ar_notation():
    print(action_rule)
# Print rules (pretty notation)
for action_rule in action_rules.get_rules().get_pretty_ar_notation():
    print(action_rule)
# JSON export
print(action_rules.get_rules().get_export_notation())

Action Rules CLI

action-rules --min_stable_attributes 2 --min_flexible_attributes 1 --min_undesired_support 1 --min_undesired_confidence 0.5 --min_desired_support 1 --min_desired_confidence 0.5 --csv_path 'data.csv' --stable_attributes 'Sex, Age' --flexible_attributes 'Class, Embarked' --target 'Survived' --undesired_state '0' --desired_state '1' --output_json_path 'output.json'

Jupyter Notebook Example

https://github.com/lukassykora/action-rules/blob/main/notebooks/Example.ipynb

Credits

This package was created with Cookiecutter and the waynerv/cookiecutter-pypackage project template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

action_rules-0.0.11.tar.gz (14.9 kB view details)

Uploaded Source

Built Distribution

action_rules-0.0.11-py3-none-any.whl (14.3 kB view details)

Uploaded Python 3

File details

Details for the file action_rules-0.0.11.tar.gz.

File metadata

  • Download URL: action_rules-0.0.11.tar.gz
  • Upload date:
  • Size: 14.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for action_rules-0.0.11.tar.gz
Algorithm Hash digest
SHA256 28e1320a920d486d4bb06bb3949292d9a6b415266d63849c9108a012ee3ea84d
MD5 107a4417033fe6fd431c3e070df3e1ca
BLAKE2b-256 c034bf8e2794269270d2e6c18d2dd6ab6d150bd97a8abf95ed87862de869fde9

See more details on using hashes here.

File details

Details for the file action_rules-0.0.11-py3-none-any.whl.

File metadata

File hashes

Hashes for action_rules-0.0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 e3c98e936b669ca6172c95cde88fd4528d858d2e9517995f4728a99853442eee
MD5 7699f880555de232a6a785e1b104f2a4
BLAKE2b-256 22b27cb571a37898207fc45dd9416f27e48c7a4ac8ddf36c332691669ca0287a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page