Skip to main content

The package for action rules mining using Action-Apriori (Apriori Modified for Action Rules Mining)..

Project description

Action Rules

pypi python Build Status codecov

The package for action rules mining using Action-Apriori (Apriori Modified for Action Rules Mining).

Installation

pip install action-rules

Features

Action Rules API

# Import Module
from action_rules import ActionRules
import pandas as pd

# Get Data
transactions = {'Sex': ['M', 'F', 'M', 'M', 'F', 'M', 'F'],
                'Age': ['Y', 'Y', 'O', 'Y', 'Y', 'O', 'Y'],
                'Class': [1, 1, 2, 2, 1, 1, 2],
                'Embarked': ['S', 'C', 'S', 'C', 'S', 'C', 'C'],
                'Survived': [1, 1, 0, 0, 1, 1, 0],
                }
data = pd.DataFrame.from_dict(transactions)
# Initialize ActionRules Miner with Parameters
stable_attributes = ['Age', 'Sex']
flexible_attributes = ['Embarked', 'Class']
target = 'Survived'
min_stable_attributes = 2
min_flexible_attributes = 1  # min 1
min_undesired_support = 1
min_undesired_confidence = 0.5  # min 0.5
min_desired_support = 1
min_desired_confidence = 0.5  # min 0.5
undesired_state = '0'
desired_state = '1'
# Action Rules Mining
action_rules = ActionRules(min_stable_attributes, min_flexible_attributes, min_undesired_support,
                           min_undesired_confidence, min_desired_support, min_desired_confidence, verbose=False)
# Fit
action_rules.fit(
    data,
    stable_attributes,
    flexible_attributes,
    target,
    undesired_state,
    desired_state,
)
# Print rules
for action_rule in action_rules.get_rules().get_ar_notation():
    print(action_rule)
# Print rules (pretty notation)
for action_rule in action_rules.get_rules().get_pretty_ar_notation():
    print(action_rule)
# JSON export
print(action_rules.get_rules().get_export_notation())

Action Rules CLI

action-rules --min_stable_attributes 2 --min_flexible_attributes 1 --min_undesired_support 1 --min_undesired_confidence 0.5 --min_desired_support 1 --min_desired_confidence 0.5 --csv_path 'data.csv' --stable_attributes 'Sex, Age' --flexible_attributes 'Class, Embarked' --target 'Survived' --undesired_state '0' --desired_state '1' --output_json_path 'output.json'

Jupyter Notebook Example

https://github.com/lukassykora/action-rules/blob/main/notebooks/Example.ipynb

Credits

This package was created with Cookiecutter and the waynerv/cookiecutter-pypackage project template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

action_rules-0.0.14.tar.gz (14.9 kB view details)

Uploaded Source

Built Distribution

action_rules-0.0.14-py3-none-any.whl (14.3 kB view details)

Uploaded Python 3

File details

Details for the file action_rules-0.0.14.tar.gz.

File metadata

  • Download URL: action_rules-0.0.14.tar.gz
  • Upload date:
  • Size: 14.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for action_rules-0.0.14.tar.gz
Algorithm Hash digest
SHA256 8aa6ac8e9399ac927080e83ea825239a8627d37dfa7c7461023bc1e1560aceb7
MD5 6af86ec13b545c0ce11d7e38c6165c16
BLAKE2b-256 cc14d55185e7c68bf7cf1429f406c41989ab686e91ed15364a292bec91951794

See more details on using hashes here.

File details

Details for the file action_rules-0.0.14-py3-none-any.whl.

File metadata

File hashes

Hashes for action_rules-0.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 1898e288a4c8f446a6726a7bcda8009a4e32f3b7e7476adddbcc2857da3f6ffb
MD5 34313384d8364acd3b4465ee0ba6172f
BLAKE2b-256 7bda59486cbc382cae5f9036547071d4049c97df11e1c92805b9623f09300888

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page