Skip to main content

The package for action rules mining using Action-Apriori (Apriori Modified for Action Rules Mining)..

Project description

Action Rules

pypi python Build Status codecov

The package for action rules mining using Action-Apriori (Apriori Modified for Action Rules Mining).

Installation

$ pip install action-rules

Features

Action Rules API

# Import Module
from action_rules import ActionRules
import pandas as pd

# Get Data
transactions = {'Sex': ['M', 'F', 'M', 'M', 'F', 'M', 'F'],
                'Age': ['Y', 'Y', 'O', 'Y', 'Y', 'O', 'Y'],
                'Class': [1, 1, 2, 2, 1, 1, 2],
                'Embarked': ['S', 'C', 'S', 'C', 'S', 'C', 'C'],
                'Survived': [1, 1, 0, 0, 1, 1, 0],
                }
data = pd.DataFrame.from_dict(transactions)
# Initialize ActionRules Miner with Parameters
stable_attributes = ['Age', 'Sex']
flexible_attributes = ['Embarked', 'Class']
target = 'Survived'
min_stable_attributes = 2
min_flexible_attributes = 1  # min 1
min_undesired_support = 1
min_undesired_confidence = 0.5  # min 0.5
min_desired_support = 1
min_desired_confidence = 0.5  # min 0.5
undesired_state = '0'
desired_state = '1'
# Action Rules Mining
action_rules = ActionRules(min_stable_attributes, min_flexible_attributes, min_undesired_support,
                           min_undesired_confidence, min_desired_support, min_desired_confidence, verbose=False)
# Fit
action_rules.fit(
    data,
    stable_attributes,
    flexible_attributes,
    target,
    undesired_state,
    desired_state,
)
# Print rules
for action_rule in action_rules.get_rules().get_ar_notation():
    print(action_rule)
# Print rules (pretty notation)
for action_rule in action_rules.get_rules().get_pretty_ar_notation():
    print(action_rule)
# JSON export
print(action_rules.get_rules().get_export_notation())

Action Rules CLI

$ action-rules --min_stable_attributes 2 --min_flexible_attributes 1 --min_undesired_support 1 --min_undesired_confidence 0.5 --min_desired_support 1 --min_desired_confidence 0.5 --csv_path 'data.csv' --stable_attributes 'Sex, Age' --flexible_attributes 'Class, Embarked' --target 'Survived' --undesired_state '0' --desired_state '1' --output_json_path 'output.json'

Jupyter Notebook Example

https://github.com/lukassykora/action-rules/blob/main/notebooks/Example.ipynb

Credits

This package was created with Cookiecutter and the waynerv/cookiecutter-pypackage project template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

action_rules-0.0.21.tar.gz (14.9 kB view details)

Uploaded Source

Built Distribution

action_rules-0.0.21-py3-none-any.whl (14.3 kB view details)

Uploaded Python 3

File details

Details for the file action_rules-0.0.21.tar.gz.

File metadata

  • Download URL: action_rules-0.0.21.tar.gz
  • Upload date:
  • Size: 14.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for action_rules-0.0.21.tar.gz
Algorithm Hash digest
SHA256 9946567da84d8a465a0ed85c873989faf2f5074bd87524b937e40d5c5d87a6ab
MD5 76a5d3f77d988188bac9058e879b9c25
BLAKE2b-256 43ada6c6ace905858916229d15ca5f02130b4f6464525f1ab7295fc9c0839dd3

See more details on using hashes here.

File details

Details for the file action_rules-0.0.21-py3-none-any.whl.

File metadata

File hashes

Hashes for action_rules-0.0.21-py3-none-any.whl
Algorithm Hash digest
SHA256 3886ba4f1534d9105947358ed266d96a82658188997b0c54371622d8cacf0dd7
MD5 058bbbe759873217a28fbbbcb2e17d6c
BLAKE2b-256 3962494ff09a8a647cec3fad736283b20a1db8e86304f2418f0f972e29f6c7c6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page