Skip to main content

The package for action rules mining using Action-Apriori (Apriori Modified for Action Rules Mining)..

Project description

Action Rules

pypi python Build Status codecov

The package for action rules mining using Action-Apriori (Apriori Modified for Action Rules Mining).

Installation

$ pip install action-rules

Features

Action Rules API

# Import Module
from action_rules import ActionRules
import pandas as pd

# Get Data
transactions = {'Sex': ['M', 'F', 'M', 'M', 'F', 'M', 'F'],
                'Age': ['Y', 'Y', 'O', 'Y', 'Y', 'O', 'Y'],
                'Class': [1, 1, 2, 2, 1, 1, 2],
                'Embarked': ['S', 'C', 'S', 'C', 'S', 'C', 'C'],
                'Survived': [1, 1, 0, 0, 1, 1, 0],
                }
data = pd.DataFrame.from_dict(transactions)
# Initialize ActionRules Miner with Parameters
stable_attributes = ['Age', 'Sex']
flexible_attributes = ['Embarked', 'Class']
target = 'Survived'
min_stable_attributes = 2
min_flexible_attributes = 1  # min 1
min_undesired_support = 1
min_undesired_confidence = 0.5  # min 0.5
min_desired_support = 1
min_desired_confidence = 0.5  # min 0.5
undesired_state = '0'
desired_state = '1'
# Action Rules Mining
action_rules = ActionRules(min_stable_attributes, min_flexible_attributes, min_undesired_support,
                           min_undesired_confidence, min_desired_support, min_desired_confidence, verbose=False)
# Fit
action_rules.fit(
    data,
    stable_attributes,
    flexible_attributes,
    target,
    undesired_state,
    desired_state,
)
# Print rules
for action_rule in action_rules.get_rules().get_ar_notation():
    print(action_rule)
# Print rules (pretty notation)
for action_rule in action_rules.get_rules().get_pretty_ar_notation():
    print(action_rule)
# JSON export
print(action_rules.get_rules().get_export_notation())

Action Rules CLI

$ action-rules --min_stable_attributes 2 --min_flexible_attributes 1 --min_undesired_support 1 --min_undesired_confidence 0.5 --min_desired_support 1 --min_desired_confidence 0.5 --csv_path 'data.csv' --stable_attributes 'Sex, Age' --flexible_attributes 'Class, Embarked' --target 'Survived' --undesired_state '0' --desired_state '1' --output_json_path 'output.json'

Jupyter Notebook Example

https://github.com/lukassykora/action-rules/blob/main/notebooks/Example.ipynb

Credits

This package was created with Cookiecutter and the waynerv/cookiecutter-pypackage project template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

action_rules-0.0.22.tar.gz (15.8 kB view details)

Uploaded Source

Built Distribution

action_rules-0.0.22-py3-none-any.whl (15.4 kB view details)

Uploaded Python 3

File details

Details for the file action_rules-0.0.22.tar.gz.

File metadata

  • Download URL: action_rules-0.0.22.tar.gz
  • Upload date:
  • Size: 15.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for action_rules-0.0.22.tar.gz
Algorithm Hash digest
SHA256 0684af59684414f2b6e5e8818627afad70d7ed3da8fd60a6b99e356788e85a24
MD5 a84f7ccca349fcd33fd4257ceb8d5cac
BLAKE2b-256 ab5e339c8e5817284c189bec9a6667a9112abbbb689f0c22472269779fb772ea

See more details on using hashes here.

File details

Details for the file action_rules-0.0.22-py3-none-any.whl.

File metadata

File hashes

Hashes for action_rules-0.0.22-py3-none-any.whl
Algorithm Hash digest
SHA256 1745c3307bd6603d0cc7602061b27b3fb0f660c9ff392ca7fc41923a9d384290
MD5 e7375a9e56cccb813ecada98f11255b9
BLAKE2b-256 3742dfbb7a2a5afc855068b76a9c489e3d1fff7fb944eede04e12746e84eb2ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page