Skip to main content

The package for action rules mining using Action-Apriori (Apriori Modified for Action Rules Mining)..

Project description

Action Rules

pypi python Build Status codecov

The package for action rules mining using Action-Apriori (Apriori Modified for Action Rules Mining).

Installation

$ pip install action-rules

Features

Action Rules API

# Import Module
from action_rules import ActionRules
import pandas as pd

# Get Data
transactions = {'Sex': ['M', 'F', 'M', 'M', 'F', 'M', 'F'],
                'Age': ['Y', 'Y', 'O', 'Y', 'Y', 'O', 'Y'],
                'Class': [1, 1, 2, 2, 1, 1, 2],
                'Embarked': ['S', 'C', 'S', 'C', 'S', 'C', 'C'],
                'Survived': [1, 1, 0, 0, 1, 1, 0],
                }
data = pd.DataFrame.from_dict(transactions)
# Initialize ActionRules Miner with Parameters
stable_attributes = ['Age', 'Sex']
flexible_attributes = ['Embarked', 'Class']
target = 'Survived'
min_stable_attributes = 2
min_flexible_attributes = 1  # min 1
min_undesired_support = 1
min_undesired_confidence = 0.5  # min 0.5
min_desired_support = 1
min_desired_confidence = 0.5  # min 0.5
undesired_state = '0'
desired_state = '1'
# Action Rules Mining
action_rules = ActionRules(min_stable_attributes, min_flexible_attributes, min_undesired_support,
                           min_undesired_confidence, min_desired_support, min_desired_confidence, verbose=False)
# Fit
action_rules.fit(
    data,
    stable_attributes,
    flexible_attributes,
    target,
    undesired_state,
    desired_state,
)
# Print rules
for action_rule in action_rules.get_rules().get_ar_notation():
    print(action_rule)
# Print rules (pretty notation)
for action_rule in action_rules.get_rules().get_pretty_ar_notation():
    print(action_rule)
# JSON export
print(action_rules.get_rules().get_export_notation())

Action Rules CLI

$ action-rules --min_stable_attributes 2 --min_flexible_attributes 1 --min_undesired_support 1 --min_undesired_confidence 0.5 --min_desired_support 1 --min_desired_confidence 0.5 --csv_path 'data.csv' --stable_attributes 'Sex, Age' --flexible_attributes 'Class, Embarked' --target 'Survived' --undesired_state '0' --desired_state '1' --output_json_path 'output.json'

Jupyter Notebook Example

https://github.com/lukassykora/action-rules/blob/main/notebooks/Example.ipynb

Credits

This package was created with Cookiecutter and the waynerv/cookiecutter-pypackage project template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

action_rules-0.0.23.tar.gz (20.2 kB view details)

Uploaded Source

Built Distribution

action_rules-0.0.23-py3-none-any.whl (18.6 kB view details)

Uploaded Python 3

File details

Details for the file action_rules-0.0.23.tar.gz.

File metadata

  • Download URL: action_rules-0.0.23.tar.gz
  • Upload date:
  • Size: 20.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for action_rules-0.0.23.tar.gz
Algorithm Hash digest
SHA256 f5de3c5c6bed2b056addb80974ffe0fad91347739421cb0cf526f42f075c9196
MD5 e92be25189a9a879aaf16181b4e89620
BLAKE2b-256 2de23424009bff23ca14c132ef6218f15d950bb004207134e5d079eff9d3e49f

See more details on using hashes here.

File details

Details for the file action_rules-0.0.23-py3-none-any.whl.

File metadata

File hashes

Hashes for action_rules-0.0.23-py3-none-any.whl
Algorithm Hash digest
SHA256 d5b0d1a3655ca656de2dc6d115cbcaacba29ef235e6ee4a0baed73dbd461dcfc
MD5 adb707e7f09fc9939f57913d1807f93f
BLAKE2b-256 0190a8510b9b596901e5d5c774d5aa6291e300551eac2b711aaaff7aa382404e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page