Skip to main content

The package for action rules mining using Action-Apriori (Apriori Modified for Action Rules Mining)..

Project description

Action Rules

pypi python Build Status codecov

The package for action rules mining using Action-Apriori (Apriori Modified for Action Rules Mining).

Installation

$ pip install action-rules

For command-line interface (CLI) usage, the action-rules package must be installed using pipx:

$ pipx install action-rules

Features

Action Rules API

# Import Module
from action_rules import ActionRules
import pandas as pd

# Get Data
transactions = {'Sex': ['M', 'F', 'M', 'M', 'F', 'M', 'F'],
                'Age': ['Y', 'Y', 'O', 'Y', 'Y', 'O', 'Y'],
                'Class': [1, 1, 2, 2, 1, 1, 2],
                'Embarked': ['S', 'C', 'S', 'C', 'S', 'C', 'C'],
                'Survived': [1, 1, 0, 0, 1, 1, 0],
                }
data = pd.DataFrame.from_dict(transactions)
# Initialize ActionRules Miner with Parameters
stable_attributes = ['Age', 'Sex']
flexible_attributes = ['Embarked', 'Class']
target = 'Survived'
min_stable_attributes = 2
min_flexible_attributes = 1  # min 1
min_undesired_support = 1
min_undesired_confidence = 0.5  # min 0.5
min_desired_support = 1
min_desired_confidence = 0.5  # min 0.5
undesired_state = '0'
desired_state = '1'
# Action Rules Mining
action_rules = ActionRules(
    min_stable_attributes=min_stable_attributes,
    min_flexible_attributes=min_flexible_attributes,
    min_undesired_support=min_undesired_support,
    min_undesired_confidence=min_undesired_confidence,
    min_desired_support=min_desired_support,
    min_desired_confidence=min_desired_confidence,
    verbose=True
)
# Fit
action_rules.fit(
    data=data,  # cuDF or Pandas Dataframe
    stable_attributes=stable_attributes,
    flexible_attributes=flexible_attributes,
    target=target,
    target_undesired_state=undesired_state,
    target_desired_state=desired_state,
    use_sparse_matrix=True,  # needs SciPy or Cupyx (if use_gpu is True) installed
    use_gpu=False,  # needs Cupy installed
)
# Print rules
# Example: [(Age: O) ∧ (Sex: M) ∧ (Embarked: S → C)] ⇒ [Survived: 0 → 1], support of undesired part: 1, confidence of undesired part: 1.0, support of desired part: 1, confidence of desired part: 1.0, uplift: 1.0
for action_rule in action_rules.get_rules().get_ar_notation():
    print(action_rule)
# Print rules (pretty notation)
# Example: If attribute 'Age' is 'O', attribute 'Sex' is 'M', attribute 'Embarked' value 'S' is changed to 'C', then 'Survived' value '0' is changed to '1 with uplift: 1.0.
for action_rule in action_rules.get_rules().get_pretty_ar_notation():
    print(action_rule)
# JSON export
print(action_rules.get_rules().get_export_notation())

Action Rules CLI

$ action-rules --min_stable_attributes 2 --min_flexible_attributes 1 --min_undesired_support 1 --min_undesired_confidence 0.5 --min_desired_support 1 --min_desired_confidence 0.5 --csv_path 'data.csv' --stable_attributes 'Sex, Age' --flexible_attributes 'Class, Embarked' --target 'Survived' --undesired_state '0' --desired_state '1' --output_json_path 'output.json'

Jupyter Notebook Examples

Performance

Credits

This package was created with Cookiecutter and the waynerv/cookiecutter-pypackage project template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

action_rules-1.0.3.tar.gz (25.1 kB view details)

Uploaded Source

Built Distribution

action_rules-1.0.3-py3-none-any.whl (22.7 kB view details)

Uploaded Python 3

File details

Details for the file action_rules-1.0.3.tar.gz.

File metadata

  • Download URL: action_rules-1.0.3.tar.gz
  • Upload date:
  • Size: 25.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for action_rules-1.0.3.tar.gz
Algorithm Hash digest
SHA256 afad8878aca40e2bb189c9446dc75b166c3de74bfaf03996481096864a79aa2b
MD5 c7c6e5bb178a6fb0441ef46d070405d4
BLAKE2b-256 ad7cec977ae072861b146c1d99402f15f858904cc4ab860d907792079129f746

See more details on using hashes here.

File details

Details for the file action_rules-1.0.3-py3-none-any.whl.

File metadata

  • Download URL: action_rules-1.0.3-py3-none-any.whl
  • Upload date:
  • Size: 22.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for action_rules-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 cdd0d8c3fdca6da4c7b91eae901bb162f427e1846ccb24c5d43a486b494362ab
MD5 0580acc0f39dbf8186310f26804d21f3
BLAKE2b-256 629b01b47f4791965c533726c10017f1bb5decc677b5059cdd3cb32e0afb4242

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page