Skip to main content

Python package to process wearable accelerometer data

Project description

actipy

A Python package to process accelerometer data.

Axivity3 (.cwa), Actigraph (.gt3x), and GENEActiv (.bin) files are supported, as well as custom CSV files.

Axivity3 is the activity tracker watch used in the large-scale UK-Biobank accelerometer study.

Getting started

Prerequisite

  • Python 3.8 or greater

    $ python --version  # or python3 --version
    
  • Java 8 (1.8.0) or greater

    $ java -version
    

Install

$ pip install actipy

Usage

Process an Axivity3 (.cwa) file:

import actipy

data, info = actipy.read_device("sample.cwa.gz",
                                 lowpass_hz=20,
                                 calibrate_gravity=True,
                                 detect_nonwear=True,
                                 resample_hz=50)

Output:

data [pandas.DataFrame]
                                 x         y         z  temperature
 time
 2014-05-07 13:29:50.430 -0.513936  0.070043  1.671264    20.000000
 2014-05-07 13:29:50.440 -0.233910 -0.586894  0.081946    20.000000
 2014-05-07 13:29:50.450 -0.080303 -0.951132 -0.810433    20.000000
 2014-05-07 13:29:50.460 -0.067221 -0.976200 -0.864934    20.000000
 2014-05-07 13:29:50.470 -0.109617 -0.857322 -0.508587    20.000000
 ...                           ...       ...       ...          ...

info [dict]
 Filename                 : data/sample.cwa.gz
 Filesize(MB)             : 69.4
 Device                   : Axivity
 DeviceID                 : 13110
 ReadErrors               : 0
 SampleRate               : 100.0
 ReadOK                   : 1
 StartTime                : 2014-05-07 13:29:50
 EndTime                  : 2014-05-13 09:50:33
 NumTicks                 : 51391800
 WearTime(days)           : 5.847725231481482
 NumInterrupts            : 1
 ResampleRate             : 100.0
 NumTicksAfterResample    : 25262174
 LowpassOK                : 1
 LowpassCutoff(Hz)        : 20.0
 CalibErrorBefore(mg)     : 82.95806873592024
 CalibErrorAfter(mg)      : 4.434966371604519
 CalibOK                  : 1
 NonwearTime(days)        : 0.0
 NumNonwearEpisodes       : 0
 ...

If you have a CSV file that you want to process, you can also use the data processing routines from actipy.processing:

import actipy.processing as P

data, info_lowpass = P.lowpass(data, 100, 20)
data, info_calib = P.calibrate_gravity(data)
data, info_nonwear = P.detect_nonwear(data)
data, info_resample = P.resample(data, sample_rate)

See the documentation for more.

License

See LICENSE.md.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

actipy-2.0.3.tar.gz (45.6 kB view details)

Uploaded Source

Built Distribution

actipy-2.0.3-py3-none-any.whl (47.9 kB view details)

Uploaded Python 3

File details

Details for the file actipy-2.0.3.tar.gz.

File metadata

  • Download URL: actipy-2.0.3.tar.gz
  • Upload date:
  • Size: 45.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for actipy-2.0.3.tar.gz
Algorithm Hash digest
SHA256 f8419e857e28b53effda434768cd1bcda69ffeeff9fdfaba2a4272287a83f9b8
MD5 cec0e303ae213b7fe4f1fc751a06c04a
BLAKE2b-256 a47bd7b9084aaa62b980f68f2847e98d864b365bfcbba9ac80987f3e60eee24e

See more details on using hashes here.

File details

Details for the file actipy-2.0.3-py3-none-any.whl.

File metadata

  • Download URL: actipy-2.0.3-py3-none-any.whl
  • Upload date:
  • Size: 47.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for actipy-2.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 f8c837237b592cd74fe25aca850d8dd6a137155e1ad0245d931cfcd591faab2f
MD5 c1c8fa8197d8abd8eaa57b99dd3bad10
BLAKE2b-256 2519ee1ffa494c1487f67282e5515f2057a5453067e81757388567fa2aeace5a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page