Skip to main content

Python package to process wearable accelerometer data

Project description

actipy

A Python package to process accelerometer data.

Axivity3 (.cwa), Actigraph (.gt3x), and GENEActiv (.bin) files are supported, as well as custom CSV files.

Axivity3 is the activity tracker watch used in the large-scale UK-Biobank accelerometer study.

Getting started

Prerequisite

  • Python 3.8 or greater

    $ python --version  # or python3 --version
    
  • Java 8 (1.8.0) or greater

    $ java -version
    

Install

$ pip install actipy

Usage

Process an Axivity3 (.cwa) file:

import actipy

data, info = actipy.read_device("sample.cwa.gz",
                                 lowpass_hz=20,
                                 calibrate_gravity=True,
                                 detect_nonwear=True,
                                 resample_hz=50)

Output:

data [pandas.DataFrame]
                                 x         y         z  temperature
 time
 2014-05-07 13:29:50.430 -0.513936  0.070043  1.671264    20.000000
 2014-05-07 13:29:50.440 -0.233910 -0.586894  0.081946    20.000000
 2014-05-07 13:29:50.450 -0.080303 -0.951132 -0.810433    20.000000
 2014-05-07 13:29:50.460 -0.067221 -0.976200 -0.864934    20.000000
 2014-05-07 13:29:50.470 -0.109617 -0.857322 -0.508587    20.000000
 ...                           ...       ...       ...          ...

info [dict]
 Filename                 : data/sample.cwa.gz
 Filesize(MB)             : 69.4
 Device                   : Axivity
 DeviceID                 : 13110
 ReadErrors               : 0
 SampleRate               : 100.0
 ReadOK                   : 1
 StartTime                : 2014-05-07 13:29:50
 EndTime                  : 2014-05-13 09:50:33
 NumTicks                 : 51391800
 WearTime(days)           : 5.847725231481482
 NumInterrupts            : 1
 ResampleRate             : 100.0
 NumTicksAfterResample    : 25262174
 LowpassOK                : 1
 LowpassCutoff(Hz)        : 20.0
 CalibErrorBefore(mg)     : 82.95806873592024
 CalibErrorAfter(mg)      : 4.434966371604519
 CalibOK                  : 1
 NonwearTime(days)        : 0.0
 NumNonwearEpisodes       : 0
 ...

If you have a CSV file that you want to process, you can also use the data processing routines from actipy.processing:

import actipy.processing as P

data, info_lowpass = P.lowpass(data, 100, 20)
data, info_calib = P.calibrate_gravity(data)
data, info_nonwear = P.detect_nonwear(data)
data, info_resample = P.resample(data, sample_rate)

See the documentation for more.

License

See LICENSE.md.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

actipy-2.1.1.tar.gz (67.5 kB view details)

Uploaded Source

Built Distribution

actipy-2.1.1-py3-none-any.whl (48.9 kB view details)

Uploaded Python 3

File details

Details for the file actipy-2.1.1.tar.gz.

File metadata

  • Download URL: actipy-2.1.1.tar.gz
  • Upload date:
  • Size: 67.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for actipy-2.1.1.tar.gz
Algorithm Hash digest
SHA256 d0fd38f54b03dc0e03b734def0faf212777fa8b1f6f0e6c2413d02760c7bc309
MD5 ea506fd70ca897d742da4fe6c824f628
BLAKE2b-256 14898d4acc5dd9880ac59fbdc4cc6df22034f9350e43d312efe1f7167d22e99b

See more details on using hashes here.

File details

Details for the file actipy-2.1.1-py3-none-any.whl.

File metadata

  • Download URL: actipy-2.1.1-py3-none-any.whl
  • Upload date:
  • Size: 48.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for actipy-2.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 309737c851570643c23156ef0db789714fe8d48a995cce12262f5e70fd1fa4e2
MD5 4dc3dea9b0d217d3e1361644209d8af0
BLAKE2b-256 794da0a8f08e09c5ef84032cd3812638b12dd1e4bc0acd5c1a53a8abcd5358ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page