Skip to main content

Python package to process wearable accelerometer data

Project description

actipy

A Python package to process accelerometer data.

Axivity3 (.cwa), Actigraph (.gt3x), and GENEActiv (.bin) files are supported, as well as custom CSV files.

Axivity3 is the activity tracker watch used in the large-scale UK-Biobank accelerometer study.

Getting started

Prerequisite

  • Python 3.8 or greater

    $ python --version  # or python3 --version
    
  • Java 8 (1.8.0) or greater

    $ java -version
    

Install

$ pip install actipy

Usage

Process an Axivity3 (.cwa) file:

import actipy

data, info = actipy.read_device("sample.cwa.gz",
                                 lowpass_hz=20,
                                 calibrate_gravity=True,
                                 detect_nonwear=True,
                                 resample_hz=50)

Output:

data [pandas.DataFrame]
                                 x         y         z  temperature
 time
 2014-05-07 13:29:50.430 -0.513936  0.070043  1.671264    20.000000
 2014-05-07 13:29:50.440 -0.233910 -0.586894  0.081946    20.000000
 2014-05-07 13:29:50.450 -0.080303 -0.951132 -0.810433    20.000000
 2014-05-07 13:29:50.460 -0.067221 -0.976200 -0.864934    20.000000
 2014-05-07 13:29:50.470 -0.109617 -0.857322 -0.508587    20.000000
 ...                           ...       ...       ...          ...

info [dict]
 Filename                 : data/sample.cwa.gz
 Filesize(MB)             : 69.4
 Device                   : Axivity
 DeviceID                 : 13110
 ReadErrors               : 0
 SampleRate               : 100.0
 ReadOK                   : 1
 StartTime                : 2014-05-07 13:29:50
 EndTime                  : 2014-05-13 09:50:33
 NumTicks                 : 51391800
 WearTime(days)           : 5.847725231481482
 NumInterrupts            : 1
 ResampleRate             : 100.0
 NumTicksAfterResample    : 25262174
 LowpassOK                : 1
 LowpassCutoff(Hz)        : 20.0
 CalibErrorBefore(mg)     : 82.95806873592024
 CalibErrorAfter(mg)      : 4.434966371604519
 CalibOK                  : 1
 NonwearTime(days)        : 0.0
 NumNonwearEpisodes       : 0
 ...

Refer to the Data Dictionary for a comprehensive list of outputs.

If you have a CSV file that you want to process, you can also use the data processing routines from actipy.processing:

import actipy.processing as P

data, info_lowpass = P.lowpass(data, 100, 20)
data, info_calib = P.calibrate_gravity(data)
data, info_nonwear = P.detect_nonwear(data)
data, info_resample = P.resample(data, sample_rate)

See the documentation for more.

Contributing

If you would like to contribute to this repository, please check out CONTRIBUTING.md. We welcome contributions in the form of bug reports, feature requests, and pull requests.

License

See LICENSE.md.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

actipy-3.0.8.tar.gz (71.8 kB view details)

Uploaded Source

Built Distribution

actipy-3.0.8-py3-none-any.whl (54.8 kB view details)

Uploaded Python 3

File details

Details for the file actipy-3.0.8.tar.gz.

File metadata

  • Download URL: actipy-3.0.8.tar.gz
  • Upload date:
  • Size: 71.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for actipy-3.0.8.tar.gz
Algorithm Hash digest
SHA256 cb6eae530cac486b0ed8974ab2186e919a28e5aeb3965fe8c329bd97fe2d4084
MD5 6e4a8e943c22198456aadc55b536582e
BLAKE2b-256 11c661d7618680990011cb18f5fd6d18c080a7d2b3b5ce2f0eab76852081d01e

See more details on using hashes here.

File details

Details for the file actipy-3.0.8-py3-none-any.whl.

File metadata

  • Download URL: actipy-3.0.8-py3-none-any.whl
  • Upload date:
  • Size: 54.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for actipy-3.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 c86773dd77cafd1b649f321b7100c3ea40e2fafc73fc45e5c6f10d198e66c50a
MD5 ba8806dc55ad0f9e6dbf03a17b24351f
BLAKE2b-256 545aebc4ed0e4edb11b24b5d6f72bd061b352e17dd1f38cc8b73f8dffa2f38a2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page