Skip to main content

Active Learning With Rich feedabck

Project description

Example

Sample code in AL_Notebook.ipynb notebook

Install

  • pip install active_learning
  • OR
  • python setup.py sdist
  • python setup.py install

Environment Setup

  • Make sure that conda is installed.
  • Run the following command in the root directory to build the conda environment "trews": conda env create -f environment.yml
  • Run source activate trews before executing the Jupyter notebook.
  • "trews" has a package nb_conda which allows you to specify the conda env you want as a Jupyter kernel. You must have "trews" activated for the Jupyter notebook server to manage conda environments

Objective

  • Provide justification for custom sepsis definition generated from soliciting rich feedback from physicians.
  • Create an AL implementation that incorporates rich feedback from physicians to improve the TREWS tool.
  • Long-term goal: Create a library of active learning tools for any CDSS we design for new clinical problems.

Code Organization

  • General functions should be written in .py files under folder 'python_scripts'
  • Experiments should load these python files into iPython notebooks for visualization/output neatness and reproducibility.
    • Large experimental datasets should be stored locally and tracked using plaintext files or logs.
  • Datasets used for testing implementation should be kept under repository 'dev_data'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

active_learning-0.3.0.tar.gz (14.3 kB view details)

Uploaded Source

File details

Details for the file active_learning-0.3.0.tar.gz.

File metadata

File hashes

Hashes for active_learning-0.3.0.tar.gz
Algorithm Hash digest
SHA256 e626798146b4fc9f9445fbb6dc8cd71245bc89ffdff22011bcf9401b006156f9
MD5 b5173493dadeb8d014a744ac74db3e84
BLAKE2b-256 f81fe94889532e3f771b543926f2a6ca9ec9239b2e0ac684ecb0f64136fdaf4a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page