Active semi-supervised clustering algorithms for scikit-learn
Project description
active-semi-supervised-clustering
Active semi-supervised clustering algorithms for scikit-learn.
Algorithms
Semi-supervised clustering
- Seeded-KMeans
- Constrainted-KMeans
- COP-KMeans
- Pairwise constrained K-Means (PCK-Means)
- Metric K-Means (MK-Means)
- Metric pairwise constrained K-Means (MPCK-Means)
Active learning of pairwise clustering
- Explore & Consolidate
- Min-max
- Normalized point-based uncertainty (NPU) method
Installation
pip install active-semi-supervised-clustering
Usage
from sklearn import datasets, metrics
from active_semi_clustering.semi_supervised.pairwise_constraints import PCKMeans
from active_semi_clustering.active.pairwise_constraints import ExampleOracle, ExploreConsolidate, MinMax
X, y = datasets.load_iris(return_X_y=True)
First, obtain some pairwise constraints from an oracle.
# TODO implement your own oracle that will, for example, query a domain expert via GUI or CLI
oracle = ExampleOracle(y, max_queries_cnt=10)
active_learner = MinMax(n_clusters=3)
active_learner.fit(X, oracle=oracle)
pairwise_constraints = active_learner.pairwise_constraints_
Then, use the constraints to do the clustering.
clusterer = PCKMeans(n_clusters=3)
clusterer.fit(X, ml=pairwise_constraints[0], cl=pairwise_constraints[1])
Evaluate the clustering using Adjusted Rand Score.
metrics.adjusted_rand_score(y, clusterer.labels_)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for active-semi-supervised-clustering-0.0.1.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5ce2b210988560754a3ca1ac33bc20f60174c7b700504418355ea09e6c149efc |
|
MD5 | b7bf75e99c995593f831865fac6922bf |
|
BLAKE2b-256 | 84cc8189ebe735cd7b6c53869775969d89c6fe2d68a872ddd1cc24df3a38d1ba |
Close
Hashes for active_semi_supervised_clustering-0.0.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 754ab7082c5343a74c9f3089928348622bfc52147062049baa79c53aa584a566 |
|
MD5 | 1b5fd0f81a0703f3d0737b11cc35be9d |
|
BLAKE2b-256 | e5734eb6a2966b94de7ca401d87de4104015bf3c911df0434bd99e1eeac67a84 |