Skip to main content

A convenient library to deal with large json data

Project description

Activejson

PyPI version Tests Codecov

A convenient library to deal with large json data

A convenient library to deal with large json data. The purpose of this package is help to deal with complex json-like data, converting them into a more manageable data structure.

Installation

OS X & Linux:

From PYPI

$ pip3 install activejson

from the source

$ git clone https://github.com/dany2691/activejson.git
$ cd activejson
$ python3 setup.py install

Usage example

You can flat a complex dict the next way:

complex_json = {
    'cat': {'grass': 'feline', 'mud': 'you never know', 'horse': 'my joke'},
    'dolphin': [
        {'tiger': [{'bird': 'blue jay'}, {'fish': 'dolphin'}]},
        {'cat2': 'feline'},
       {'dog2': 'canine'}
  ],
  'dog': 'canine'
}
from activejson import flatten_json

flatten_complex_json = flatten_json(complex_json)

print(flatten_complex_json)

The result could be the next:

{
    'cat_grass': 'feline',
    'cat_horse': 'my joke',
    'cat_mud': 'you never know',
    'dog': 'canine',
    'dolphin_0_tiger_0_bird': 'blue jay',
    'dolphin_0_tiger_1_fish': 'dolphin',
    'dolphin_1_cat2': 'feline',
    'dolphin_2_dog2': 'canine'
}

On the other hand, is possible to convert that dict into an object with dynamic attributes:

from activejson import FrozenJSON

frozen_complex_json = FrozenJSON(complex_json)

print(frozen_complex_json.cat.grass)
print(frozen_complex_json.cat.mud)
print(frozen_b.dolphin[2].dog2)

The result could be the next:

'feline'
'you never know'
'canine'

To retrieve the underlying json, is possible to use the json property:

frozen_complex_json.json
{
    'cat_grass': 'feline',
    'cat_horse': 'my joke',
    'cat_mud': 'you never know',
    'dog': 'canine',
    'dolphin_0_tiger_0_bird': 'blue jay',
    'dolphin_0_tiger_1_fish': 'dolphin',
    'dolphin_1_cat2': 'feline',
    'dolphin_2_dog2': 'canine'
}

Development setup

This project uses Poetry for dependecy resolution. It's a kind of mix between pip and virtualenv. Follow the next instructions to setup the development enviroment.

$ pip install poetry
$ git clone https://github.com/dany2691/activejson.git
$ cd activejson
$ poetry install

To run the test-suite, inside the pybundler directory:

$ poetry run pytest test/ -vv

Meta

Daniel Omar Vergara Pérez – @__danvergara __daniel.omar.vergara@gmail.com -- github.com/danvergara

Valery Briz - @valerybriz -- github.com/valerybriz

Contributing

  1. Fork it (https://github.com/BentoBox-Project/activejson)
  2. Create your feature branch (git checkout -b feature/fooBar)
  3. Commit your changes (git commit -am 'Add some fooBar')
  4. Push to the branch (git push origin feature/fooBar)
  5. Create a new Pull Request

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

activejson-0.4.0.tar.gz (4.6 kB view details)

Uploaded Source

Built Distribution

activejson-0.4.0-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file activejson-0.4.0.tar.gz.

File metadata

  • Download URL: activejson-0.4.0.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.5 CPython/3.8.2 Linux/5.0.0-1035-azure

File hashes

Hashes for activejson-0.4.0.tar.gz
Algorithm Hash digest
SHA256 d9c04393c5e4d219e4a6c730a51e134933022cb9d984f443c5ea753ac66c815e
MD5 cedded496df0118cc1754219df23167f
BLAKE2b-256 676ebf55cbfdfb313e766e2d50c78978ce9e371f649bc10b48f87963ef9158f3

See more details on using hashes here.

File details

Details for the file activejson-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: activejson-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 4.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.5 CPython/3.8.2 Linux/5.0.0-1035-azure

File hashes

Hashes for activejson-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 86b91df5279e15f3b6e41c878b4d14f60d8dd3a43348eb08f7695969ef36698c
MD5 c07f27a7098c91d820692a729791a667
BLAKE2b-256 1849512b5df9ca210b9c1bc40473bebdfa2befd96401b38323577f5128532d4b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page