Skip to main content

Actspotter library for detecting activities

Project description

The actspotter is a library / tensorflow model for detecting activities. It allows to classify body activities in images or videos. The package is limited to videos and images with only one person by design.

The following classes are available:

  • none

  • pull_up_up

  • pull_up_down

  • pull_up_none

  • push_up_up

  • push_up_down

  • push_up_none

  • sit_up_up

  • sit_up_down

  • sit_up_none

The package is currently in early development.

Future plans

Tensorflow model deployment will be integrated soon. Currently this package allows to classify push-ups, sit-ups and pull-ups. In future version kicks and others body activities will follow.

It is also planned to provide a signal processing layer that allows to easily detect connected activites and count them.

Another application will be to integrate with keyboard drivers so that activities could be used for controlling video games (e.g. by kicks).

Installation

Install this library in a virtualenv using pip. virtualenv is a tool to create isolated Python environments. The basic problem it addresses is one of dependencies and versions, and indirectly permissions.

With virtualenv, it’s possible to install this library without needing system install permissions, and without clashing with the installed system dependencies.

Supported Python Versions

Python >= 3.6

Mac/Linux

pip install virtualenv
virtualenv <your-env>
source <your-env>/bin/activate
<your-env>/bin/pip install actspotter

Windows

pip install virtualenv
virtualenv <your-env>
<your-env>\Scripts\activate
<your-env>\Scripts\pip.exe install actspotter

Example Usage

Requirement: cv2 (opencv) installed.

Classification of images:

import cv2
import tensorflow as tf
from actspotter import ImageClassifier, classify_image_input_dimension, class_names

def _resize(frame, dim=classify_image_input_dimension):
    frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA)
    return frame

def _to_tf_array(frame, dim=classify_image_input_dimension):
    frame = _resize(frame, dim)
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    frame = tf.convert_to_tensor(frame, dtype=tf.float32)
    return frame

images = [
    to_tf_array(cv2.imread("test.jpg")),
]

print(class_names)
print(image_classifier.classify_images(images))

Classification of a video:

import cv2
import tensorflow as tf
from actspotter import VideoClassifier, classify_image_input_dimension

def _resize(frame, dim=classify_image_input_dimension):
    return frame

def _to_tf_array(frame, dim=classify_image_input_dimension):
    frame = _resize(frame, dim)
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    frame = tf.convert_to_tensor(frame, dtype=tf.float32)
    return frame

cap = cv2.VideoCapture(0)

video_classifier = VideoClassifier(buffer_size=4)
video_classifier.start()

while cap.isOpened():
    ret, frame = cap.read()

    if ret == True:
        video_classifier.add_image(to_tf_array(frame))
        state = video_classifier.get_last_classification()
        print(state)

        frame = resize(frame, dim=(600, 600))
        cv2.putText(frame, f"{state}", (10, 40), 0, 2, 255)

        cv2.imshow("Frame", frame)

        waitkey = cv2.waitKey(25) & 0xFF

        if waitkey == ord("q"):
            break

video_classifier.exit()
cap.release()
cv2.destroyAllWindows()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

actspotter-0.1.3.tar.gz (11.8 MB view details)

Uploaded Source

Built Distribution

actspotter-0.1.3-py2.py3-none-any.whl (11.9 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file actspotter-0.1.3.tar.gz.

File metadata

  • Download URL: actspotter-0.1.3.tar.gz
  • Upload date:
  • Size: 11.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for actspotter-0.1.3.tar.gz
Algorithm Hash digest
SHA256 5efda7bc882b515c520d691c550684911fb300f1183b442dd251d31a300ed2f0
MD5 6da89d8e99c622c0e6338cf8a64e133d
BLAKE2b-256 55238a70229047d4c4d3b386656a97c54e9da03c1d43fe38ce708090fd36ec78

See more details on using hashes here.

File details

Details for the file actspotter-0.1.3-py2.py3-none-any.whl.

File metadata

  • Download URL: actspotter-0.1.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 11.9 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for actspotter-0.1.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d4dcfdac16876af9dc27f8f4923ce365f41250cbd2063e9bcd821b4cd5f1d326
MD5 44c5482d99c14a0ed19eb97e09aa9be2
BLAKE2b-256 c42a5fe66527d71df7b648ff79ab939f6db4d1ecddb375d20bc082d204a08b55

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page