Skip to main content

A package for solving actuarial math and life contingent risks

Project description

This Python package implements fundamental methods for modeling life contingent risks, and closely follows the coverage of traditional topics in actuarial exams and standard texts such as the “Fundamentals of Actuarial Math - Long-term” exam syllabus by the Society of Actuaries, and “Actuarial Mathematics for Life Contingent Risks” by Dickson, Hardy and Waters.

Overview

The package comprises three sets of classes, which:

  1. Implement general actuarial methods

    • Basic interest theory and probability laws

    • Survival functions, expected future lifetimes and fractional ages

    • Insurance, annuity, premiums, policy values, and reserves calculations

  2. Adjust results for

    • Extra mortality risks

    • 1/mthly payment frequency using UDD or Woolhouse approaches

  3. Specify and load a particular form of assumptions

    • Recursion inputs

    • Life table, select life table, or standard ultimate life table

    • Mortality laws, such as constant force of maturity, beta and uniform distributions, or Makeham’s and Gompertz’s laws

Quick Start

  1. pip install actuarialmath

    • also requires numpy, scipy, matplotlib and pandas.

  2. Start Python (version >= 3.10) or Jupyter-notebook

    • Select a suitable subclass to initialize with your actuarial assumptions, such as MortalityLaws (or a special law like ConstantForce), LifeTable, SULT, SelectLife or Recursion.

    • Call appropriate methods to compute intermediate or final results, or to solve parameter values implicitly.

    • Adjust the answers with ExtraRisk or Mthly (or its UDD or Woolhouse) classes.

Examples

# SOA FAM-L sample question 5.7
from actuarialmath import Recursion, Woolhouse
# initialize Recursion class with actuarial inputs
life = Recursion().set_interest(i=0.04)\
                  .set_A(0.188, x=35)\
                  .set_A(0.498, x=65)\
                  .set_p(0.883, x=35, t=30)
# modfy the standard results with Woolhouse mthly approximation
mthly = Woolhouse(m=2, life=life, three_term=False)
# compute the desired temporary annuity value
print(1000 * mthly.temporary_annuity(35, t=30)) #   solution = 17376.7
# SOA FAM-L sample question 7.20
from actuarialmath import SULT, Contract
life = SULT()
# compute the required FPT policy value
S = life.FPT_policy_value(35, t=1, b=1000)  # is always 0 in year 1!
# input the given policy contract terms
contract = Contract(benefit=1000,
                    initial_premium=.3,
                    initial_policy=300,
                    renewal_premium=.04,
                    renewal_policy=30)
# compute gross premium using the equivalence principle
G = life.gross_premium(A=life.whole_life_insurance(35), **contract.premium_terms)
# compute the required policy value
R = life.gross_policy_value(35, t=1, contract=contract.set_contract(premium=G))
print(R-S)   # solution = -277.19

Resources

  1. Jupyter notebook or run in Colab, to solve all sample SOA FAM-L exam questions

  2. User Guide, or download pdf

  3. API reference

  4. Github repo and issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

actuarialmath-1.0.1.tar.gz (63.1 kB view details)

Uploaded Source

Built Distribution

actuarialmath-1.0.1-py3-none-any.whl (72.5 kB view details)

Uploaded Python 3

File details

Details for the file actuarialmath-1.0.1.tar.gz.

File metadata

  • Download URL: actuarialmath-1.0.1.tar.gz
  • Upload date:
  • Size: 63.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for actuarialmath-1.0.1.tar.gz
Algorithm Hash digest
SHA256 940bef54fd5d842230d81e6d5e687a6689d679fa8c1b51e6e5f51bc7ed153fb6
MD5 d085d0b7638ba23c47f69b79f1f7b03e
BLAKE2b-256 55e428c51a4d4503a1877a23c6e655a3a09361f61fcfedb41a071951b8cf443f

See more details on using hashes here.

File details

Details for the file actuarialmath-1.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for actuarialmath-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 cdfaeec46a3cfb5fbcd074970e8e143c4d90ae708b410e65ac8579ec99d28d5f
MD5 74c9f13d1a3da475ff48ad4f5a07a850
BLAKE2b-256 8852e43192a386509a1aea6b67a185fd8dcc1da8b1e1a8f89b39312d3d156c0b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page