Skip to main content

Acumos client library for building and pushing Python models

Project description

Acumos Python Client User Guide

Build Status

acumos is a client library that allows modelers to push their Python models to the Acumos platform.

Installation

You will need a Python 3.6 environment in order to install acumos. You can use Anaconda (preferred) or pyenv to install and manage Python environments.

If you’re new to Python and need an IDE to start developing, we recommend using Spyder which can easily be installed with Anaconda.

The acumos package can be installed with pip:

pip install acumos

Protocol Buffers

The acumos package uses protocol buffers and assumes you have the protobuf compiler protoc installed. Please visit the protobuf repository and install the appropriate protoc for your operating system. Installation is as easy as downloading a binary release and adding it to your system $PATH. This is a temporary requirement that will be removed in a future version of acumos.

Anaconda Users: You can easily install protoc from an Anaconda package via:

conda install -c anaconda libprotobuf

Acumos Python Client Tutorial

This tutorial provides a brief overview of acumos for creating Acumos models. The tutorial is meant to be followed linearly, and some code snippets depend on earlier imports and objects. Full examples are available in the examples/ directory of the Acumos Python client repository.

  1. Importing Acumos
  2. Creating A Session
  3. A Simple Model
  4. Exporting Models
  5. Defining Types
  6. Using DataFrames with scikit-learn
  7. Declaring Requirements
  8. Declaring Options
  9. Keras and TensorFlow
  10. Testing Models
  11. More Examples

Importing Acumos

First import the modeling and session packages:

from acumos.modeling import Model, List, Dict, create_namedtuple, create_dataframe
from acumos.session import AcumosSession

Creating A Session

An AcumosSession allows you to export your models to Acumos. You can either dump a model to disk locally, so that you can upload it via the Acumos website, or push the model to Acumos directly.

If you’d like to push directly to Acumos, create a session with the push_api argument:

session = AcumosSession(push_api="https://my.acumos.instance.com/push")

See the onboarding page of your Acumos instance website to find the correct push_api URL to use.

If you’re only interested in dumping a model to disk, arguments aren’t needed:

session = AcumosSession()

A Simple Model

Any Python function can be used to define an Acumos model using Python type hints.

Let’s first create a simple model that adds two integers together. Acumos needs to know what the inputs and outputs of your functions are. We can use the Python type annotation syntax to specify the function signature.

Below we define a function add_numbers with int type parameters x and y, and an int return type. We then build an Acumos model with an add method.

Note: Function docstrings are included with your model and used for documentation, so be sure to include one!

def add_numbers(x: int, y: int) -> int:
    '''Returns the sum of x and y'''
    return x + y

model = Model(add=add_numbers)

Exporting Models

We can now export our model using the AcumosSession object created earlier. The push and dump APIs are shown below. The dump method will save the model to disk so that it can be onboarded via the Acumos website. The push method pushes the model directly to Acumos.

session.push(model, 'my-model')
session.dump(model, 'my-model', '~/')  # creates ~/my-model

For more information on how to onboard a dumped model via the Acumos website, see the web onboarding guide.

Note: Pushing a model to Acumos will prompt you for an onboarding token if you have not previously provided one. The interactive prompt can be avoided by exporting the ACUMOS_TOKEN environment variable, which corresponds to an authentication token that can be found in your account settings on the Acumos website.

Defining Types

In this example, we make a model that can read binary images and output some metadata about them. This model makes use of a custom type ImageShape.

We first create a NamedTuple type called ImageShape, which is like an ordinary tuple but with field accessors. We can then use ImageShape as the return type of get_shape. Note how ImageShape can be instantiated as a new object.

import io
import PIL

ImageShape = create_namedtuple('ImageShape', [('width', int), ('height', int)])

def get_format(data: bytes) -> str:
    '''Returns the format of an image'''
    buffer = io.BytesIO(data)
    img = PIL.Image.open(buffer)
    return img.format

def get_shape(data: bytes) -> ImageShape:
    '''Returns the width and height of an image'''
    buffer = io.BytesIO(data)
    img = PIL.Image.open(buffer)
    shape = ImageShape(width=img.width, height=img.height)
    return shape

model = Model(get_format=get_format, get_shape=get_shape)

Note: Starting in Python 3.6, you can alternatively use this simpler syntax:

from acumos.modeling import NamedTuple

class ImageShape(NamedTuple):
    '''Type representing the shape of an image'''
    width: int
    height: int

Defining Unstructured Types

The create_namedtuple function allows us to create types with structure, however sometimes it’s useful to work with unstructured data, such as plain text, dictionaries or byte strings. The new_type function allows for just that.

For example, here’s a model that takes in unstructured text, and returns the number of words in the text:

from acumos.modeling import new_type

Text = new_type(str, 'Text')

def count(text: Text) -> Text:
    '''Counts the number of words in the text'''
    return len(text.split(' '))

By using the new_type function, you inform acumos that Text is unstructured, and therefore acumos will not create any structured types or messages for the count function. Version 0.9.x of acumos allows only the use of unstructured types in input and output of the user defined function.

You can use the new_type function to create dictionaries or byte string type unstructured data as shown below.

from acumos.modeling import new_type

Dict = new_type(dict, 'Dict')

Image = new_type(byte, 'Image')

Using DataFrames with scikit-learn

In this example, we train a RandomForestClassifier using scikit-learn and use it to create an Acumos model.

When making machine learning models, it’s common to use a dataframe data structure to represent data. To make things easier, acumos can create NamedTuple types directly from pandas.DataFrame objects.

NamedTuple types created from pandas.DataFrame objects store columns as named attributes and preserve column order. Because NamedTuple types are like ordinary tuple types, the resulting object can be iterated over. Thus, iterating over a NamedTuple dataframe object is the same as iterating over the columns of a pandas.DataFrame. As a consequence, note how np.column_stack can be used to create a numpy.ndarray from the input df.

Finally, the model returns a numpy.ndarray of int corresponding to predicted iris classes. The classify_iris function represents this as List[int] in the signature return.

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier

iris = load_iris()
X = iris.data
y = iris.target

clf = RandomForestClassifier(random_state=0)
clf.fit(X, y)

# here, an appropriate NamedTuple type is inferred from a pandas DataFrame
X_df = pd.DataFrame(X, columns=['sepal_length', 'sepal_width', 'petal_length', 'petal_width'])
IrisDataFrame = create_dataframe('IrisDataFrame', X_df)

# ==================================================================================
# # or equivalently:
#
# IrisDataFrame = create_namedtuple('IrisDataFrame', [('sepal_length', List[float]),
#                                                     ('sepal_width', List[float]),
#                                                     ('petal_length', List[float]),
#                                                     ('petal_width', List[float])])
# ==================================================================================

def classify_iris(df: IrisDataFrame) -> List[int]:
    '''Returns an array of iris classifications'''
    X = np.column_stack(df)
    return clf.predict(X)

model = Model(classify=classify_iris)

Check out the sklearn examples in the examples directory for full runnable scripts.

Declaring Requirements

If your model depends on another Python script or package that you wrote, you can declare the dependency via the acumos.metadata.Requirements class:

from acumos.metadata import Requirements

Note that only pure Python is supported at this time.

Custom Scripts

Custom scripts can be included by giving Requirements a sequence of paths to Python scripts, or directories containing Python scripts. For example, if the model defined in model.py depended on helper1.py:

model_workspace/
├── model.py
├── helper1.py
└── helper2.py

this dependency could be declared like so:

from helper1 import do_thing

def transform(x: int) -> int:
    '''Does the thing'''
    return do_thing(x)

model = Model(transform=transform)

reqs = Requirements(scripts=['./helper1.py'])

# using the AcumosSession created earlier:
session.push(model, 'my-model', reqs)
session.dump(model, 'my-model', '~/', reqs)  # creates ~/my-model

Alternatively, all Python scripts within model_workspace/ could be included using:

reqs = Requirements(scripts=['.'])

Custom Packages

Custom packages can be included by giving Requirements a sequence of paths to Python packages, i.e. directories with an __init__.py file. Assuming that the package ~/repos/my_pkg contains:

my_pkg/
├── __init__.py
├── bar.py
└── foo.py

then you can bundle my_pkg with your model like so:

from my_pkg.bar import do_thing

def transform(x: int) -> int:
    '''Does the thing'''
    return do_thing(x)

model = Model(transform=transform)

reqs = Requirements(packages=['~/repos/my_pkg'])

# using the AcumosSession created earlier:
session.push(model, 'my-model', reqs)
session.dump(model, 'my-model', '~/', reqs)  # creates ~/my-model

Requirement Mapping

Python packaging and PyPI aren’t perfect, and sometimes the name of the Python package you import in your code is different than the package name used to install it. One example of this is the PIL package, which is commonly installed using a fork called pillow (i.e. pip install pillow will provide the PIL package).

To address this inconsistency, the Requirements class allows you to map Python package names to PyPI package names. When your model is analyzed for dependencies by acumos, this mapping is used to ensure the correct PyPI packages will be used.

In the example below, the req_map parameter is used to declare a requirements mapping from the PIL Python package to the pillow PyPI package:

reqs = Requirements(req_map={'PIL': 'pillow'})

Declaring Options

The acumos.metadata.Options class is a collection of options that users may wish to specify along with their Acumos model. If an Options instance is not provided to AcumosSession.push, then default options are applied. See the class docstring for more details.

Below, we demonstrate how options can be used to include additional model metadata and influence the behavior of the Acumos platform. For example, a license can be included with a model via the license parameter, either by providing a license string or a path to a license file. Likewise, we can specify whether or not the Acumos platform should eagerly build the model microservice via the create_microservice parameter.

from acumos.metadata import Options

opts = Options(license="Apache 2.0",       # "./path/to/license_file" also works
               create_microservice=False,  # don't build the microservice yet

session.push(model, 'my-model', options=opts)

Keras and TensorFlow

Check out the Keras and TensorFlow examples in the examples/ directory of the Acumos Python client repository.

Testing Models

The acumos.modeling.Model class wraps your custom functions and produces corresponding input and output types. This section shows how to access those types for the purpose of testing. For simplicity, we’ll create a model using the add_numbers function again:

def add_numbers(x: int, y: int) -> int:
    '''Returns the sum of x and y'''
    return x + y

model = Model(add=add_numbers)

The model object now has an add attribute, which acts as a wrapper around add_numbers. The add_numbers function can be invoked like so:

result = model.add.inner(1, 2)
print(result)  # 3

The model.add object also has a corresponding wrapped function that is generated by acumos.modeling.Model. The wrapped function is the primary way your model will be used within Acumos.

We can access the input_type and output_type attributes to test that the function works as expected:

AddIn = model.add.input_type
AddOut = model.add.output_type

add_in = AddIn(1, 2)
print(add_in)  # AddIn(x=1, y=2)

add_out = AddOut(3)
print(add_out)  # AddOut(value=3)

model.add.wrapped(add_in) == add_out  # True

More Examples

Below are some additional function examples. Note how numpy types can even be used in type hints, as shown in the numpy_sum function.

from collections import Counter
import numpy as np

def list_sum(x: List[int]) -> int:
    '''Computes the sum of a sequence of integers'''
    return sum(x)

def numpy_sum(x: List[np.int32]) -> np.int32:
    '''Uses numpy to compute a vectorized sum over x'''
    return np.sum(x)

def count_strings(x: List[str]) -> Dict[str, int]:
    '''Returns a count mapping from a sequence of strings'''
    return Counter(x)

Acumos Python Client Release Notes

v0.9.4, 05 April 2020

v0.9.3, 30 Mar 2020

v0.9.2, 31 Jan 2020

v0.9.1

v0.8.0

(This is the recommended version for the Clio release)

  • Enhancements
    • Users may now specify additional options when pushing their Acumos model. See the options section in the tutorial for more information.
    • acumos now supports Keras models built with tensorflow.keras
  • Support changes
    • acumos no longer supports Python 3.4

v0.7.2

  • Bug fixes
    • The deprecated authentication API is now considered optional
    • A more portable path solution is now used when saving models, to avoid issues with models developed in Windows

v0.7.1

  • Authentication
    • Username and password authentication has been deprecated
    • Users are now interactively prompted for an onboarding token, as opposed to a username and password

v0.7.0

  • Requirements
    • Python script dependencies can now be specified using a Requirements object
    • Python script dependencies found during the introspection stage are now included with the model

v0.6.5

  • Bug fixes
    • Don’t attempt to use an empty auth token (avoids blank strings to be set in environment)

v0.6.4

  • Bug fixes
    • The normalized path of the system base prefix is now used for identifying stdlib packages

v0.6.3

  • Bug fixes
    • Improved dependency inspection when using a virtualenv
    • Removed custom packages from model metadata, as it caused image build failures
    • Fixed Python 3.5.2 ordering bug in wrapped model usage

v0.6.2

  • TensorFlow
    • Fixed a serialization issue that occurred when using a frozen graph

v0.6.1

  • Model upload
    • The JWT is now cleared immediately after a failed upload
    • Additional HTTP information is now included in the error message

v0.6.0

  • Authentication token
    • A new environment variable ACUMOS_TOKEN can be used to short-circuit the authentication process
  • Extra headers
    • AcumosSession.push now accepts an optional extra_headers argument, which will allow users and systems to include additional information when pushing models to the onboarding server

v0.5.0

  • Modeling
    • Python 3.6 NamedTuple syntax support now tested
    • User documentation includes example of new NamedTuple syntax
  • Model wrapper
    • Model wrapper now has APIs for consuming and producing Python dicts and JSON strings
  • Protobuf and protoc
    • An explicit check for protoc is now made, which raises a more informative error message
    • User documentation is more clear about dependence on protoc, and provides an easier way to install protoc via Anaconda
  • Keras
    • The active keras backend is now included as a tracked module
    • keras_contrib layers are now supported

v0.4.0

  • Replaced library-specific onboarding functions with “new-style” models
    • Support for arbitrary Python functions using type hints
    • Support for custom user-defined types
    • Support for TensorFlow models
    • Improved dependency introspection
    • Improved object serialization mechanisms

Acumos Python Client Developer Guide

Testing

We use a combination of tox, pytest, and flake8 to test acumos. Code which is not PEP8 compliant (aside from E501) will be considered a failing test. You can use tools like autopep8 to “clean” your code as follows:

$ pip install autopep8
$ cd acumos-python-client
$ autopep8 -r --in-place --ignore E501 acumos/ testing/ examples/

Run tox directly:

$ cd acumos-python-client
$ export WORKSPACE=$(pwd)  # env var normally provided by Jenkins
$ tox

You can also specify certain tox environments to test:

$ tox -e py36  # only test against Python 3.6
$ tox -e flake8  # only lint code

Packaging

The RST files in the docs/ directory are used to publish HTML pages to ReadTheDocs.io and to build the package long description in setup.py. The symlink from the subdirectory acumos-package to the docs/ directory is required for the Python packaging tools. Those tools build a source distribution from files in the package root, the directory acumos-package. The MANIFEST.in file directs the tools to pull files from directory docs/, and the symlink makes it possible because the tools only look within the package root.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for acumos, version 0.9.4
Filename, size File type Python version Upload date Hashes
Filename, size acumos-0.9.4-py2.py3-none-any.whl (34.9 kB) File type Wheel Python version py2.py3 Upload date Hashes View
Filename, size acumos-0.9.4.tar.gz (39.3 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page