Adam-atan2 for Pytorch
Project description
Adam-atan2 - Pytorch (wip)
Implementation of the proposed Adam-atan2 optimizer in Pytorch
A multi-million dollar paper out of google deepmind basically proposes a small change to Adam (using atan2
) for greater stability
Install
$ pip install adam-atan2-pytorch
Usage
# toy model
import torch
from torch import nn
model = nn.Linear(10, 1)
# import AdamAtan2 and instantiate with parameters
from adam_atan2_pytorch import AdamAtan2
opt = AdamAtan2(model.parameters(), lr = 1e-4)
# forward and backwards
for _ in range(100):
loss = model(torch.randn(10))
loss.backward()
# optimizer step
opt.step()
opt.zero_grad()
Citations
@inproceedings{Everett2024ScalingEA,
title = {Scaling Exponents Across Parameterizations and Optimizers},
author = {Katie Everett and Lechao Xiao and Mitchell Wortsman and Alex Alemi and Roman Novak and Peter J. Liu and Izzeddin Gur and Jascha Narain Sohl-Dickstein and Leslie Pack Kaelbling and Jaehoon Lee and Jeffrey Pennington},
year = {2024},
url = {https://api.semanticscholar.org/CorpusID:271051056}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file adam_atan2_pytorch-0.0.1.tar.gz
.
File metadata
- Download URL: adam_atan2_pytorch-0.0.1.tar.gz
- Upload date:
- Size: 5.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c6b0c1a7f44ff146ed0cfb0edee6d963ef567c069bdc7b6c17799030f97369f1 |
|
MD5 | 214ba3489c1af2962be414ce3d365de4 |
|
BLAKE2b-256 | af47c252cf7f8d8258aabf83fe322ca765f052868f7dff96397a1e67d1251dcf |
File details
Details for the file adam_atan2_pytorch-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: adam_atan2_pytorch-0.0.1-py3-none-any.whl
- Upload date:
- Size: 4.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ad1bf3f311b13ccd5548ec4d4cbf078caf1a89ffc438180d83a899cec882e94 |
|
MD5 | 0b3062d0bbf3ce87c246e1e5f962eb34 |
|
BLAKE2b-256 | 188bab365c20912564bd5df2d9c8359175ad7fc2862233aa657ab3474793f0b7 |