Skip to main content

Adam-atan2 for Pytorch

Project description

Adam-atan2 - Pytorch

Implementation of the proposed Adam-atan2 optimizer in Pytorch

A multi-million dollar paper out of google deepmind proposes a small change to Adam update rule (using atan2) to remove the epsilon altogether for numerical stability and scale invariance

It also contains some features for improving plasticity (continual learning field)

Install

$ pip install adam-atan2-pytorch

Usage

import torch
from torch import nn

# toy model

model = nn.Linear(10, 1)

# import AdamAtan2 and instantiate with parameters

from adam_atan2_pytorch import AdamAtan2

opt = AdamAtan2(model.parameters(), lr = 1e-4)

# forward and backwards

for _ in range(100):
  loss = model(torch.randn(10))
  loss.backward()

  # optimizer step

  opt.step()
  opt.zero_grad()

Citations

@inproceedings{Everett2024ScalingEA,
    title   = {Scaling Exponents Across Parameterizations and Optimizers},
    author  = {Katie Everett and Lechao Xiao and Mitchell Wortsman and Alex Alemi and Roman Novak and Peter J. Liu and Izzeddin Gur and Jascha Narain Sohl-Dickstein and Leslie Pack Kaelbling and Jaehoon Lee and Jeffrey Pennington},
    year    = {2024},
    url     = {https://api.semanticscholar.org/CorpusID:271051056}
}
@inproceedings{Kumar2023MaintainingPI,
    title   = {Maintaining Plasticity in Continual Learning via Regenerative Regularization},
    author  = {Saurabh Kumar and Henrik Marklund and Benjamin Van Roy},
    year    = {2023},
    url     = {https://api.semanticscholar.org/CorpusID:261076021}
}
@article{Lewandowski2024LearningCB,
    title   = {Learning Continually by Spectral Regularization},
    author  = {Alex Lewandowski and Saurabh Kumar and Dale Schuurmans and Andr'as Gyorgy and Marlos C. Machado},
    journal = {ArXiv},
    year    = {2024},
    volume  = {abs/2406.06811},
    url     = {https://api.semanticscholar.org/CorpusID:270380086}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

adam_atan2_pytorch-0.1.1.tar.gz (418.8 kB view details)

Uploaded Source

Built Distribution

adam_atan2_pytorch-0.1.1-py3-none-any.whl (8.4 kB view details)

Uploaded Python 3

File details

Details for the file adam_atan2_pytorch-0.1.1.tar.gz.

File metadata

  • Download URL: adam_atan2_pytorch-0.1.1.tar.gz
  • Upload date:
  • Size: 418.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for adam_atan2_pytorch-0.1.1.tar.gz
Algorithm Hash digest
SHA256 193407d4c6a4dfebd1cbeadbe46a5bfb06b33d8f61d42ff181aa9c49c721486b
MD5 572e9b9e08f8a5a82eb0220c72fde792
BLAKE2b-256 cae44796f5a1d521830b5169a07f9373f6b4b80aa412e97da769180878e6b147

See more details on using hashes here.

File details

Details for the file adam_atan2_pytorch-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for adam_atan2_pytorch-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 36643edd3065adbaccf99775b1d9ff46e11a5d1cc1ae4aa48fc70486d36dade3
MD5 342bc11c41d8bae107d0f59cb86b4655
BLAKE2b-256 eab9410aa3242350c6e1e91bca21755f38f9ca19fa3450f81e5bd50429973ab2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page