Skip to main content

Adam-atan2 for Pytorch

Project description

Adam-atan2 - Pytorch

Implementation of the proposed Adam-atan2 optimizer in Pytorch

A multi-million dollar paper out of google deepmind proposes a small change to Adam update rule (using atan2) to remove the epsilon altogether for numerical stability and scale invariance

It also contains some features for improving plasticity (continual learning field)

Install

$ pip install adam-atan2-pytorch

Usage

import torch
from torch import nn

# toy model

model = nn.Linear(10, 1)

# import AdamAtan2 and instantiate with parameters

from adam_atan2_pytorch import AdamAtan2

opt = AdamAtan2(model.parameters(), lr = 1e-4)

# forward and backwards

for _ in range(100):
  loss = model(torch.randn(10))
  loss.backward()

  # optimizer step

  opt.step()
  opt.zero_grad()

Citations

@inproceedings{Everett2024ScalingEA,
    title   = {Scaling Exponents Across Parameterizations and Optimizers},
    author  = {Katie Everett and Lechao Xiao and Mitchell Wortsman and Alex Alemi and Roman Novak and Peter J. Liu and Izzeddin Gur and Jascha Narain Sohl-Dickstein and Leslie Pack Kaelbling and Jaehoon Lee and Jeffrey Pennington},
    year    = {2024},
    url     = {https://api.semanticscholar.org/CorpusID:271051056}
}
@inproceedings{Kumar2023MaintainingPI,
    title   = {Maintaining Plasticity in Continual Learning via Regenerative Regularization},
    author  = {Saurabh Kumar and Henrik Marklund and Benjamin Van Roy},
    year    = {2023},
    url     = {https://api.semanticscholar.org/CorpusID:261076021}
}
@article{Lewandowski2024LearningCB,
    title   = {Learning Continually by Spectral Regularization},
    author  = {Alex Lewandowski and Saurabh Kumar and Dale Schuurmans and Andr'as Gyorgy and Marlos C. Machado},
    journal = {ArXiv},
    year    = {2024},
    volume  = {abs/2406.06811},
    url     = {https://api.semanticscholar.org/CorpusID:270380086}
}
@inproceedings{Taniguchi2024ADOPTMA,
    title   = {ADOPT: Modified Adam Can Converge with Any \$\beta\_2\$ with the Optimal Rate},
    author  = {Shohei Taniguchi and Keno Harada and Gouki Minegishi and Yuta Oshima and Seong Cheol Jeong and Go Nagahara and Tomoshi Iiyama and Masahiro Suzuki and Yusuke Iwasawa and Yutaka Matsuo},
    year    = {2024},
    url     = {https://api.semanticscholar.org/CorpusID:273822148}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

adam_atan2_pytorch-0.1.12.tar.gz (419.6 kB view details)

Uploaded Source

Built Distribution

adam_atan2_pytorch-0.1.12-py3-none-any.whl (11.0 kB view details)

Uploaded Python 3

File details

Details for the file adam_atan2_pytorch-0.1.12.tar.gz.

File metadata

  • Download URL: adam_atan2_pytorch-0.1.12.tar.gz
  • Upload date:
  • Size: 419.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for adam_atan2_pytorch-0.1.12.tar.gz
Algorithm Hash digest
SHA256 bbd563abdc102e87afc5a982bae2e22e87e971103cf6735b640a629a1b50563c
MD5 38627a54ae57f6dcce36997d7be45966
BLAKE2b-256 a8c7289b4a8ce8ea99f5a4dd86337e3d1e02d93b9f8cec779134be410196855c

See more details on using hashes here.

File details

Details for the file adam_atan2_pytorch-0.1.12-py3-none-any.whl.

File metadata

File hashes

Hashes for adam_atan2_pytorch-0.1.12-py3-none-any.whl
Algorithm Hash digest
SHA256 4e485e67e286837b40f1f5c860f37dcc74de4e1a4b78e8e26701102d32601d36
MD5 3dfe083d5c15d16eb0272597ced78889
BLAKE2b-256 7862154bed3fd2adae393c8183faa915f893842837dd57ea3db3625c0a06a983

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page