Adam-atan2 for Pytorch
Project description
Adam-atan2 - Pytorch
Implementation of the proposed Adam-atan2 optimizer in Pytorch
A multi-million dollar paper out of google deepmind proposes a small change to Adam update rule (using atan2
) to remove the epsilon altogether for numerical stability and scale invariance
It also contains some features for improving plasticity (continual learning field)
Install
$ pip install adam-atan2-pytorch
Usage
import torch
from torch import nn
# toy model
model = nn.Linear(10, 1)
# import AdamAtan2 and instantiate with parameters
from adam_atan2_pytorch import AdamAtan2
opt = AdamAtan2(model.parameters(), lr = 1e-4)
# forward and backwards
for _ in range(100):
loss = model(torch.randn(10))
loss.backward()
# optimizer step
opt.step()
opt.zero_grad()
Citations
@inproceedings{Everett2024ScalingEA,
title = {Scaling Exponents Across Parameterizations and Optimizers},
author = {Katie Everett and Lechao Xiao and Mitchell Wortsman and Alex Alemi and Roman Novak and Peter J. Liu and Izzeddin Gur and Jascha Narain Sohl-Dickstein and Leslie Pack Kaelbling and Jaehoon Lee and Jeffrey Pennington},
year = {2024},
url = {https://api.semanticscholar.org/CorpusID:271051056}
}
@inproceedings{Kumar2023MaintainingPI,
title = {Maintaining Plasticity in Continual Learning via Regenerative Regularization},
author = {Saurabh Kumar and Henrik Marklund and Benjamin Van Roy},
year = {2023},
url = {https://api.semanticscholar.org/CorpusID:261076021}
}
@article{Lewandowski2024LearningCB,
title = {Learning Continually by Spectral Regularization},
author = {Alex Lewandowski and Saurabh Kumar and Dale Schuurmans and Andr'as Gyorgy and Marlos C. Machado},
journal = {ArXiv},
year = {2024},
volume = {abs/2406.06811},
url = {https://api.semanticscholar.org/CorpusID:270380086}
}
@inproceedings{Taniguchi2024ADOPTMA,
title = {ADOPT: Modified Adam Can Converge with Any \$\beta\_2\$ with the Optimal Rate},
author = {Shohei Taniguchi and Keno Harada and Gouki Minegishi and Yuta Oshima and Seong Cheol Jeong and Go Nagahara and Tomoshi Iiyama and Masahiro Suzuki and Yusuke Iwasawa and Yutaka Matsuo},
year = {2024},
url = {https://api.semanticscholar.org/CorpusID:273822148}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
adam_atan2_pytorch-0.1.5.tar.gz
(419.5 kB
view details)
Built Distribution
File details
Details for the file adam_atan2_pytorch-0.1.5.tar.gz
.
File metadata
- Download URL: adam_atan2_pytorch-0.1.5.tar.gz
- Upload date:
- Size: 419.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ff73a50ff620302e4ba0856ebf20244e0e97366402bf630de9eec54f114a53fd |
|
MD5 | 69951c2d619ac4d2c9755f5758fe4d9d |
|
BLAKE2b-256 | 072c470778da4eac5fb212d91e8dba58700f42a9fc9aa857c3e733d4be121227 |
File details
Details for the file adam_atan2_pytorch-0.1.5-py3-none-any.whl
.
File metadata
- Download URL: adam_atan2_pytorch-0.1.5-py3-none-any.whl
- Upload date:
- Size: 10.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ca2313a308a1bb2b99103683e28d671028ad92ed1efdeaa4a471a6a44747593 |
|
MD5 | 16e3f093c8adf84233f91b058c389fab |
|
BLAKE2b-256 | cba45eaca3e18b5042c3bf37f890cf3c49ecc42fb46390bc8d94643b0673dd4e |