Skip to main content

Adam-atan2 for Pytorch

Project description

Adam-atan2 - Pytorch

Implementation of the proposed Adam-atan2 optimizer in Pytorch

A multi-million dollar paper out of google deepmind proposes a small change to Adam update rule (using atan2) to remove the epsilon altogether for numerical stability and scale invariance

It also contains some features for improving plasticity (continual learning field)

Install

$ pip install adam-atan2-pytorch

Usage

import torch
from torch import nn

# toy model

model = nn.Linear(10, 1)

# import AdamAtan2 and instantiate with parameters

from adam_atan2_pytorch import AdamAtan2

opt = AdamAtan2(model.parameters(), lr = 1e-4)

# forward and backwards

for _ in range(100):
  loss = model(torch.randn(10))
  loss.backward()

  # optimizer step

  opt.step()
  opt.zero_grad()

Citations

@inproceedings{Everett2024ScalingEA,
    title   = {Scaling Exponents Across Parameterizations and Optimizers},
    author  = {Katie Everett and Lechao Xiao and Mitchell Wortsman and Alex Alemi and Roman Novak and Peter J. Liu and Izzeddin Gur and Jascha Narain Sohl-Dickstein and Leslie Pack Kaelbling and Jaehoon Lee and Jeffrey Pennington},
    year    = {2024},
    url     = {https://api.semanticscholar.org/CorpusID:271051056}
}
@inproceedings{Kumar2023MaintainingPI,
    title   = {Maintaining Plasticity in Continual Learning via Regenerative Regularization},
    author  = {Saurabh Kumar and Henrik Marklund and Benjamin Van Roy},
    year    = {2023},
    url     = {https://api.semanticscholar.org/CorpusID:261076021}
}
@article{Lewandowski2024LearningCB,
    title   = {Learning Continually by Spectral Regularization},
    author  = {Alex Lewandowski and Saurabh Kumar and Dale Schuurmans and Andr'as Gyorgy and Marlos C. Machado},
    journal = {ArXiv},
    year    = {2024},
    volume  = {abs/2406.06811},
    url     = {https://api.semanticscholar.org/CorpusID:270380086}
}
@inproceedings{Taniguchi2024ADOPTMA,
    title   = {ADOPT: Modified Adam Can Converge with Any \$\beta\_2\$ with the Optimal Rate},
    author  = {Shohei Taniguchi and Keno Harada and Gouki Minegishi and Yuta Oshima and Seong Cheol Jeong and Go Nagahara and Tomoshi Iiyama and Masahiro Suzuki and Yusuke Iwasawa and Yutaka Matsuo},
    year    = {2024},
    url     = {https://api.semanticscholar.org/CorpusID:273822148}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

adam_atan2_pytorch-0.1.6.tar.gz (419.5 kB view details)

Uploaded Source

Built Distribution

adam_atan2_pytorch-0.1.6-py3-none-any.whl (10.9 kB view details)

Uploaded Python 3

File details

Details for the file adam_atan2_pytorch-0.1.6.tar.gz.

File metadata

  • Download URL: adam_atan2_pytorch-0.1.6.tar.gz
  • Upload date:
  • Size: 419.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for adam_atan2_pytorch-0.1.6.tar.gz
Algorithm Hash digest
SHA256 ec44b9a7b7e306c954d51f819da5ddea59a9b37794f23e07008758d812ea8bb4
MD5 74153ed2eff2b8a38ac857fb83ae1d14
BLAKE2b-256 7b36fbcefafe947308cd77c00af827543df0ab52114e662d800feea02769016c

See more details on using hashes here.

File details

Details for the file adam_atan2_pytorch-0.1.6-py3-none-any.whl.

File metadata

File hashes

Hashes for adam_atan2_pytorch-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 b4817e68ad07904eeabed93dd316c3adcc9e52285b6f493e8b6f67a59cc951c9
MD5 d041bd3159c445339c024187c4496412
BLAKE2b-256 71def745ec09e77adfb3970d9e4b0f6f34fbb20df82e306ce117eba39b85ffad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page