Skip to main content

Adam-atan2 for Pytorch

Project description

Adam-atan2 - Pytorch

Implementation of the proposed Adam-atan2 optimizer in Pytorch

A multi-million dollar paper out of google deepmind proposes a small change to Adam update rule (using atan2) to remove the epsilon altogether for numerical stability and scale invariance

It also contains some features for improving plasticity (continual learning field)

Install

$ pip install adam-atan2-pytorch

Usage

import torch
from torch import nn

# toy model

model = nn.Linear(10, 1)

# import AdamAtan2 and instantiate with parameters

from adam_atan2_pytorch import AdamAtan2

opt = AdamAtan2(model.parameters(), lr = 1e-4)

# forward and backwards

for _ in range(100):
  loss = model(torch.randn(10))
  loss.backward()

  # optimizer step

  opt.step()
  opt.zero_grad()

Citations

@inproceedings{Everett2024ScalingEA,
    title   = {Scaling Exponents Across Parameterizations and Optimizers},
    author  = {Katie Everett and Lechao Xiao and Mitchell Wortsman and Alex Alemi and Roman Novak and Peter J. Liu and Izzeddin Gur and Jascha Narain Sohl-Dickstein and Leslie Pack Kaelbling and Jaehoon Lee and Jeffrey Pennington},
    year    = {2024},
    url     = {https://api.semanticscholar.org/CorpusID:271051056}
}
@inproceedings{Kumar2023MaintainingPI,
    title   = {Maintaining Plasticity in Continual Learning via Regenerative Regularization},
    author  = {Saurabh Kumar and Henrik Marklund and Benjamin Van Roy},
    year    = {2023},
    url     = {https://api.semanticscholar.org/CorpusID:261076021}
}
@article{Lewandowski2024LearningCB,
    title   = {Learning Continually by Spectral Regularization},
    author  = {Alex Lewandowski and Saurabh Kumar and Dale Schuurmans and Andr'as Gyorgy and Marlos C. Machado},
    journal = {ArXiv},
    year    = {2024},
    volume  = {abs/2406.06811},
    url     = {https://api.semanticscholar.org/CorpusID:270380086}
}
@inproceedings{Taniguchi2024ADOPTMA,
    title   = {ADOPT: Modified Adam Can Converge with Any \$\beta\_2\$ with the Optimal Rate},
    author  = {Shohei Taniguchi and Keno Harada and Gouki Minegishi and Yuta Oshima and Seong Cheol Jeong and Go Nagahara and Tomoshi Iiyama and Masahiro Suzuki and Yusuke Iwasawa and Yutaka Matsuo},
    year    = {2024},
    url     = {https://api.semanticscholar.org/CorpusID:273822148}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

adam_atan2_pytorch-0.1.7.tar.gz (419.5 kB view details)

Uploaded Source

Built Distribution

adam_atan2_pytorch-0.1.7-py3-none-any.whl (11.0 kB view details)

Uploaded Python 3

File details

Details for the file adam_atan2_pytorch-0.1.7.tar.gz.

File metadata

  • Download URL: adam_atan2_pytorch-0.1.7.tar.gz
  • Upload date:
  • Size: 419.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for adam_atan2_pytorch-0.1.7.tar.gz
Algorithm Hash digest
SHA256 62833f0d9d54cecf234f201e820870ebc6a0a6ae03a841568b9f94f12d72556d
MD5 483e9da2cfaaec7b076ead70ef4791c0
BLAKE2b-256 7ffd4512072859ea5c79b83bc6e4439ad61723ab06579b40a5b38b1411b00fd6

See more details on using hashes here.

File details

Details for the file adam_atan2_pytorch-0.1.7-py3-none-any.whl.

File metadata

File hashes

Hashes for adam_atan2_pytorch-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 a8104680751621e61d5f3e9d4cd61b82cc9d4e7238fef05ac7f660e611e42c7b
MD5 62e0296d539682be35f4b6208d704f60
BLAKE2b-256 6fda2a0e1321912cb21a69d3210745acdbac3a6739a9da1724782b6334e70a43

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page