Skip to main content

Adam-atan2 for Pytorch

Project description

Adam-atan2 - Pytorch

Implementation of the proposed Adam-atan2 optimizer in Pytorch

A multi-million dollar paper out of google deepmind proposes a small change to Adam update rule (using atan2) to remove the epsilon altogether for numerical stability and scale invariance

It also contains some features for improving plasticity (continual learning field)

Install

$ pip install adam-atan2-pytorch

Usage

import torch
from torch import nn

# toy model

model = nn.Linear(10, 1)

# import AdamAtan2 and instantiate with parameters

from adam_atan2_pytorch import AdamAtan2

opt = AdamAtan2(model.parameters(), lr = 1e-4)

# forward and backwards

for _ in range(100):
  loss = model(torch.randn(10))
  loss.backward()

  # optimizer step

  opt.step()
  opt.zero_grad()

Citations

@inproceedings{Everett2024ScalingEA,
    title   = {Scaling Exponents Across Parameterizations and Optimizers},
    author  = {Katie Everett and Lechao Xiao and Mitchell Wortsman and Alex Alemi and Roman Novak and Peter J. Liu and Izzeddin Gur and Jascha Narain Sohl-Dickstein and Leslie Pack Kaelbling and Jaehoon Lee and Jeffrey Pennington},
    year    = {2024},
    url     = {https://api.semanticscholar.org/CorpusID:271051056}
}
@inproceedings{Kumar2023MaintainingPI,
    title   = {Maintaining Plasticity in Continual Learning via Regenerative Regularization},
    author  = {Saurabh Kumar and Henrik Marklund and Benjamin Van Roy},
    year    = {2023},
    url     = {https://api.semanticscholar.org/CorpusID:261076021}
}
@article{Lewandowski2024LearningCB,
    title   = {Learning Continually by Spectral Regularization},
    author  = {Alex Lewandowski and Saurabh Kumar and Dale Schuurmans and Andr'as Gyorgy and Marlos C. Machado},
    journal = {ArXiv},
    year    = {2024},
    volume  = {abs/2406.06811},
    url     = {https://api.semanticscholar.org/CorpusID:270380086}
}
@inproceedings{Taniguchi2024ADOPTMA,
    title   = {ADOPT: Modified Adam Can Converge with Any \$\beta\_2\$ with the Optimal Rate},
    author  = {Shohei Taniguchi and Keno Harada and Gouki Minegishi and Yuta Oshima and Seong Cheol Jeong and Go Nagahara and Tomoshi Iiyama and Masahiro Suzuki and Yusuke Iwasawa and Yutaka Matsuo},
    year    = {2024},
    url     = {https://api.semanticscholar.org/CorpusID:273822148}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

adam_atan2_pytorch-0.1.8.tar.gz (419.5 kB view details)

Uploaded Source

Built Distribution

adam_atan2_pytorch-0.1.8-py3-none-any.whl (11.0 kB view details)

Uploaded Python 3

File details

Details for the file adam_atan2_pytorch-0.1.8.tar.gz.

File metadata

  • Download URL: adam_atan2_pytorch-0.1.8.tar.gz
  • Upload date:
  • Size: 419.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for adam_atan2_pytorch-0.1.8.tar.gz
Algorithm Hash digest
SHA256 d04fa2ce5ece7e118419fb8b6b64a2ed2d4a9a32ea155c756ab6dbfa506bc8f5
MD5 a5dec45b61397ce588585a9dd474b1ce
BLAKE2b-256 cfdb623ce130e483d69669a19e3ab98406ae462d712c0fcbfa9138152065fe34

See more details on using hashes here.

File details

Details for the file adam_atan2_pytorch-0.1.8-py3-none-any.whl.

File metadata

File hashes

Hashes for adam_atan2_pytorch-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 135ae74f1f8810ac27424402d7dcb4ccbb8a5f85dbd0324b2af8f7f6f3f2b196
MD5 be0466d7fdb5f199c56df6ec3256ffed
BLAKE2b-256 b1d611fe30f06ce5e27f03308bd69bd470e493f86f6f07975340a92acc43f465

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page