Skip to main content

Adam-atan2 for Pytorch

Project description

Adam-atan2 - Pytorch

Implementation of the proposed Adam-atan2 optimizer in Pytorch

A multi-million dollar paper out of google deepmind proposes a small change to Adam update rule (using atan2) to remove the epsilon altogether for numerical stability and scale invariance

It also contains some features for improving plasticity (continual learning field)

Install

$ pip install adam-atan2-pytorch

Usage

import torch
from torch import nn

# toy model

model = nn.Linear(10, 1)

# import AdamAtan2 and instantiate with parameters

from adam_atan2_pytorch import AdamAtan2

opt = AdamAtan2(model.parameters(), lr = 1e-4)

# forward and backwards

for _ in range(100):
  loss = model(torch.randn(10))
  loss.backward()

  # optimizer step

  opt.step()
  opt.zero_grad()

Citations

@inproceedings{Everett2024ScalingEA,
    title   = {Scaling Exponents Across Parameterizations and Optimizers},
    author  = {Katie Everett and Lechao Xiao and Mitchell Wortsman and Alex Alemi and Roman Novak and Peter J. Liu and Izzeddin Gur and Jascha Narain Sohl-Dickstein and Leslie Pack Kaelbling and Jaehoon Lee and Jeffrey Pennington},
    year    = {2024},
    url     = {https://api.semanticscholar.org/CorpusID:271051056}
}
@inproceedings{Kumar2023MaintainingPI,
    title   = {Maintaining Plasticity in Continual Learning via Regenerative Regularization},
    author  = {Saurabh Kumar and Henrik Marklund and Benjamin Van Roy},
    year    = {2023},
    url     = {https://api.semanticscholar.org/CorpusID:261076021}
}
@article{Lewandowski2024LearningCB,
    title   = {Learning Continually by Spectral Regularization},
    author  = {Alex Lewandowski and Saurabh Kumar and Dale Schuurmans and Andr'as Gyorgy and Marlos C. Machado},
    journal = {ArXiv},
    year    = {2024},
    volume  = {abs/2406.06811},
    url     = {https://api.semanticscholar.org/CorpusID:270380086}
}
@inproceedings{Taniguchi2024ADOPTMA,
    title   = {ADOPT: Modified Adam Can Converge with Any \$\beta\_2\$ with the Optimal Rate},
    author  = {Shohei Taniguchi and Keno Harada and Gouki Minegishi and Yuta Oshima and Seong Cheol Jeong and Go Nagahara and Tomoshi Iiyama and Masahiro Suzuki and Yusuke Iwasawa and Yutaka Matsuo},
    year    = {2024},
    url     = {https://api.semanticscholar.org/CorpusID:273822148}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

adam_atan2_pytorch-0.1.9.tar.gz (419.5 kB view details)

Uploaded Source

Built Distribution

adam_atan2_pytorch-0.1.9-py3-none-any.whl (10.9 kB view details)

Uploaded Python 3

File details

Details for the file adam_atan2_pytorch-0.1.9.tar.gz.

File metadata

  • Download URL: adam_atan2_pytorch-0.1.9.tar.gz
  • Upload date:
  • Size: 419.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for adam_atan2_pytorch-0.1.9.tar.gz
Algorithm Hash digest
SHA256 91662deb0fd411594b00c768f2f9bcbe28bfaf46137e67871202c738871301d2
MD5 aec3ef706de3593542ffe12a6a1f66b6
BLAKE2b-256 9c058cc91896fbc6c923bfe87b01d46605397d38a4355c9a07d3c63dec5b9f19

See more details on using hashes here.

File details

Details for the file adam_atan2_pytorch-0.1.9-py3-none-any.whl.

File metadata

File hashes

Hashes for adam_atan2_pytorch-0.1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 a0271bc5cb7a5f4788acc3d45214a183c13eb19d378338e9d7e1b8d22438424c
MD5 5d69e6532c40bfa75297dccc54719038
BLAKE2b-256 a98aa69fdab97aa74c3f0d8935d9f3463dd35bf5bdc2594dde5f827029a2d63a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page