Skip to main content

Automatic Differentiation for rigid-body-dynamics AlgorithMs

Project description

ADAM

Adam

Automatic Differentiation for rigid-body-dynamics AlgorithMs

ADAM implements a collection of algorithms for calculating rigid-body dynamics for floating-base robots, in mixed representation (see Traversaro's A Unified View of the Equations of Motion used for Control Design of Humanoid Robots) using:

ADAM employs the automatic differentiation capabilities of these frameworks to compute, if needed, gradients, Jacobian, Hessians of rigid-body dynamics quantities. This approach enables the design of optimal control and reinforcement learning strategies in robotics.

ADAM is based on Roy Featherstone's Rigid Body Dynamics Algorithms.


⚠️ REPOSITORY UNDER DEVELOPMENT ⚠️
We cannot guarantee stable API


🐍 Dependencies

Other requisites are:

  • urdf_parser_py
  • jax
  • casadi
  • pytorch
  • numpy

They will be installed in the installation step!

💾 Installation

The installation can be done either using the Python provided by apt (on Debian-based distros) or via conda (on Linux and macOS).

Installation with pip

Install python3, if not installed (in Ubuntu 20.04):

sudo apt install python3.8

Create a virtual environment, if you prefer. For example:

pip install virtualenv
python3 -m venv your_virtual_env
source your_virtual_env/bin/activate

Inside the virtual environment, install the library from pip:

  • Install Jax interface:

    pip install adam-robotics[jax]
    
  • Install CasADi interface:

    pip install adam-robotics[casadi]
    
  • Install PyTorch interface:

    pip install adam-robotics[pytorch]
    
  • Install ALL interfaces:

    pip install adam-robotics[all]
    

If you want the last version:

pip install adam-robotics[selected-interface]@git+https://github.com/ami-iit/ADAM

or clone the repo and install:

git clone https://github.com/ami-iit/ADAM.git
cd ADAM
pip install .[selected-interface]

Installation with conda

Install in a conda environment the required dependencies:

  • Jax interface dependencies:

    mamba create -n adamenv -c conda-forge -c robostack jax numpy lxml prettytable matplotlib ros-noetic-urdfdom-py
    
  • CasADi interface dependencies:

    mamba create -n adamenv -c conda-forge -c robostack casadi numpy lxml prettytable matplotlib ros-noetic-urdfdom-py
    
  • PyTorch interface dependencies:

    mamba create -n adamenv -c conda-forge -c robostack pytorch numpy lxml prettytable matplotlib ros-noetic-urdfdom-py
    
  • ALL interfaces dependencies:

    mamba create -n adamenv -c conda-forge -c robostack jax casadi pytorch numpy lxml prettytable matplotlib ros-noetic-urdfdom-py
    

Activate the environment, clone the repo and install the library:

mamba activate adamenv
git clone https://github.com/dic-iit/ADAM.git
cd ADAM
pip install --no-deps .

🚀 Usage

The following are small snippets of the use of ADAM. More examples are arriving! Have also a look at te tests folder.

Jax interface

from adam.jax import KinDynComputations
import icub_models
import numpy as np

# if you want to icub-models https://github.com/robotology/icub-models to retrieve the urdf
model_path = icub_models.get_model_file("iCubGazeboV2_5")
# The joint list
joints_name_list = [
    'torso_pitch', 'torso_roll', 'torso_yaw', 'l_shoulder_pitch',
    'l_shoulder_roll', 'l_shoulder_yaw', 'l_elbow', 'r_shoulder_pitch',
    'r_shoulder_roll', 'r_shoulder_yaw', 'r_elbow', 'l_hip_pitch', 'l_hip_roll',
    'l_hip_yaw', 'l_knee', 'l_ankle_pitch', 'l_ankle_roll', 'r_hip_pitch',
    'r_hip_roll', 'r_hip_yaw', 'r_knee', 'r_ankle_pitch', 'r_ankle_roll'
]
# Specify the root link
root_link = 'root_link'
kinDyn = KinDynComputations(model_path, joints_name_list, root_link)
w_H_b = np.eye(4)
joints = np.ones(len(joints_name_list))
M = kinDyn.mass_matrix(w_H_b, joints)
print(M)

CasADi interface

from adam.casadi import KinDynComputations
import icub_models
import numpy as np

# if you want to icub-models https://github.com/robotology/icub-models to retrieve the urdf
model_path = icub_models.get_model_file("iCubGazeboV2_5")
# The joint list
joints_name_list = [
    'torso_pitch', 'torso_roll', 'torso_yaw', 'l_shoulder_pitch',
    'l_shoulder_roll', 'l_shoulder_yaw', 'l_elbow', 'r_shoulder_pitch',
    'r_shoulder_roll', 'r_shoulder_yaw', 'r_elbow', 'l_hip_pitch', 'l_hip_roll',
    'l_hip_yaw', 'l_knee', 'l_ankle_pitch', 'l_ankle_roll', 'r_hip_pitch',
    'r_hip_roll', 'r_hip_yaw', 'r_knee', 'r_ankle_pitch', 'r_ankle_roll'
]
# Specify the root link
root_link = 'root_link'
kinDyn = KinDynComputations(model_path, joints_name_list, root_link)
w_H_b = np.eye(4)
joints = np.ones(len(joints_name_list))
M = kinDyn.mass_matrix_fun()
print(M(w_H_b, joints))

PyTorch interface

from adam.pytorch import KinDynComputations
import icub_models
import numpy as np

# if you want to icub-models https://github.com/robotology/icub-models to retrieve the urdf
model_path = icub_models.get_model_file("iCubGazeboV2_5")
# The joint list
joints_name_list = [
    'torso_pitch', 'torso_roll', 'torso_yaw', 'l_shoulder_pitch',
    'l_shoulder_roll', 'l_shoulder_yaw', 'l_elbow', 'r_shoulder_pitch',
    'r_shoulder_roll', 'r_shoulder_yaw', 'r_elbow', 'l_hip_pitch', 'l_hip_roll',
    'l_hip_yaw', 'l_knee', 'l_ankle_pitch', 'l_ankle_roll', 'r_hip_pitch',
    'r_hip_roll', 'r_hip_yaw', 'r_knee', 'r_ankle_pitch', 'r_ankle_roll'
]
# Specify the root link
root_link = 'root_link'
kinDyn = KinDynComputations(model_path, joints_name_list, root_link)
w_H_b = np.eye(4)
joints = np.ones(len(joints_name_list))
M = kinDyn.mass_matrix(w_H_b, joints)
print(M)

🦸‍♂️ Contributing

ADAM is an open-source project. Contributions are very welcome!

Open an issue with your feature request or if you spot a bug. Then, you can also proceed with a Pull-requests! :rocket:

Todo

  • Center of Mass position
  • Jacobians
  • Forward kinematics
  • Mass Matrix via CRBA
  • Centroidal Momentum Matrix via CRBA
  • Recursive Newton-Euler algorithm (still no acceleration in the algorithm, since it is used only for the computation of the bias force)
  • Articulated Body algorithm

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

adam-robotics-0.0.6.tar.gz (37.5 kB view hashes)

Uploaded Source

Built Distribution

adam_robotics-0.0.6-py3-none-any.whl (35.2 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page