Adam with weight recovery optimizer for pytorch
Project description
AdamR
Adam with weight Recovery optimizer
TL;DR
AdamW tends to decay parameters towards zero, which makes the model "forget" the pretrained parameters during finetuning. Instead, AdamWR tries to recover parameters towards pretrained values during finetuning.
Have a try
Just like other PyTorch optimizers,
from adamr import AdamR
from xxx import SomeModel, SomeData, SomeDevice, SomeLoss
model = SomeModel()
dataloader = SomeData()
model.to(SomeDevice)
adamr = AdamR(
model.parameters(),
lr=1e-5,
betas=(0.9, 0.998), # Adam's beta parameters
eps=1e-8,
weight_recovery=0.1
)
loss_fn = SomeLoss()
for x, y in dataloader:
adamwr.zero_grad()
y_bar = model(x)
loss = loss_fn(y_bar, y)
loss.backward()
adamr.step()
Algorithm
TODO: improve the readability
Here is a paper snippet:
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
adamr-0.0.1.tar.gz
(316.5 kB
view details)
Built Distribution
adamr-0.0.1-py3-none-any.whl
(10.5 kB
view details)
File details
Details for the file adamr-0.0.1.tar.gz
.
File metadata
- Download URL: adamr-0.0.1.tar.gz
- Upload date:
- Size: 316.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0a7ff02de1bbbc2cd9100cf36ae5ac5f1d975a4e2f0046b8e21d35d718a06d7e |
|
MD5 | 9eb771a80a51279a4ebb1de020dac261 |
|
BLAKE2b-256 | 497e51f6a38949fd65e89f0215ea79ad7288abb0333cd885815f5f2ab90e5c60 |
File details
Details for the file adamr-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: adamr-0.0.1-py3-none-any.whl
- Upload date:
- Size: 10.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9adcedacf0cf64d067f84ab1e91af99dc46e9780ae07a8cd99d350dff238d035 |
|
MD5 | b80717a7155e816b687b609272f699e0 |
|
BLAKE2b-256 | 0b8f20a037432c9b27ed9e781ab410f7a03341a53f51b2a94572c90a1f0ba82a |