Skip to main content

A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models

Project description

adapter-transformers

A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models

Tests GitHub PyPI

adapter-transformers is an extension of HuggingFace's Transformers library, integrating adapters into state-of-the-art language models by incorporating AdapterHub, a central repository for pre-trained adapter modules.

💡 Important: This library can be used as a drop-in replacement for HuggingFace Transformers and regularly synchronizes new upstream changes. Thus, most files in this repository are direct copies from the HuggingFace Transformers source, modified only with changes required for the adapter implementations.

Installation

adapter-transformers currently supports Python 3.7+ and PyTorch 1.3.1+. After installing PyTorch, you can install adapter-transformers from PyPI ...

pip install -U adapter-transformers

... or from source by cloning the repository:

git clone https://github.com/adapter-hub/adapter-transformers.git
cd adapter-transformers
pip install .

Getting Started

HuggingFace's great documentation on getting started with Transformers can be found here. adapter-transformers is fully compatible with Transformers.

To get started with adapters, refer to these locations:

  • Colab notebook tutorials, a series notebooks providing an introduction to all the main concepts of (adapter-)transformers and AdapterHub
  • https://docs.adapterhub.ml, our documentation on training and using adapters with adapter-transformers
  • https://adapterhub.ml to explore available pre-trained adapter modules and share your own adapters
  • Examples folder of this repository containing HuggingFace's example training scripts, many adapted for training adapters

Implemented Methods

Currently, adapter-transformers integrates all architectures and methods listed below:

Method Paper(s) Quick Links
Bottleneck adapters Houlsby et al. (2019)
Bapna and Firat (2019)
Quickstart, Notebook
AdapterFusion Pfeiffer et al. (2021) Docs: Training, Notebook
MAD-X,
Invertible adapters
Pfeiffer et al. (2020) Notebook
AdapterDrop Rücklé et al. (2021) Notebook
MAD-X 2.0,
Embedding training
Pfeiffer et al. (2021) Docs: Embeddings, Notebook
Prefix Tuning Li and Liang (2021) Docs
Parallel adapters,
Mix-and-Match adapters
He et al. (2021) Docs
Compacter Mahabadi et al. (2021) Docs
LoRA Hu et al. (2021) Docs
(IA)^3 Liu et al. (2022) Docs
UniPELT Mao et al. (2022) Docs

Supported Models

We currently support the PyTorch versions of all models listed on the Model Overview page in our documentation.

Citation

If you use this library for your work, please consider citing our paper AdapterHub: A Framework for Adapting Transformers:

@inproceedings{pfeiffer2020AdapterHub,
    title={AdapterHub: A Framework for Adapting Transformers},
    author={Pfeiffer, Jonas and
            R{\"u}ckl{\'e}, Andreas and
            Poth, Clifton and
            Kamath, Aishwarya and
            Vuli{\'c}, Ivan and
            Ruder, Sebastian and
            Cho, Kyunghyun and
            Gurevych, Iryna},
    booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
    pages={46--54},
    year={2020}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

adapter-transformers-3.2.0.tar.gz (5.4 MB view details)

Uploaded Source

Built Distribution

adapter_transformers-3.2.0-py3-none-any.whl (6.4 MB view details)

Uploaded Python 3

File details

Details for the file adapter-transformers-3.2.0.tar.gz.

File metadata

  • Download URL: adapter-transformers-3.2.0.tar.gz
  • Upload date:
  • Size: 5.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for adapter-transformers-3.2.0.tar.gz
Algorithm Hash digest
SHA256 a408c86cc0a68d04e5949ebae115ff031ee2949ce3c684bcdddf08be0812d119
MD5 66008229d35b03dcf0db370cb25032ee
BLAKE2b-256 0c1b1326d03377e42968387db1700ec6824ae1497b7d15687f0546ab4351070c

See more details on using hashes here.

File details

Details for the file adapter_transformers-3.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for adapter_transformers-3.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e39df67d67704ff465eecfbf6fd3ef33696a22c9958f3ac8ca5667a1a0aa2d04
MD5 ec4c4bb147a9c9431dbd74f2f9cc8a6e
BLAKE2b-256 9ec0499e0fc737696fcb19c7caf3bfc37a059b55d0873ce46dda73f91fdc38d0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page