Sampling algorithms for molecular transitions
Project description
Adaptive Sampling
This package implements various sampling algorithms for the calculation of free energy profiles of molecular transitions.
Available sampling methods include:
-
Adaptive Biasing Force (ABF) method [1]
-
Extended-system ABF (eABF) [2]
-
On-the-fly free energy estimate from the Corrected Z-Averaged Restraint (CZAR) [2]
-
Application of Multistate Bannett's Acceptance Ratio (MBAR) [3] to recover full statistical information in post-processing [4]
-
-
Well-Tempered Metadynamics (WTM) [5] and WTM-eABF [6]
-
Gaussian-accelerated MD (GaMD) [7] and GaWTM-eABF [8]
Install:
To install adaptive_sampling type:
$ pip install adaptive-sampling
Requirements:
- python >= 3.8
- numpy >= 1.19
- torch >= 1.10
- scipy >= 1.7
Basic Usage:
To use adaptive sampling with your MD code of choice add a function called get_sampling_data()
to the corresponding python interface that returns an object containing all required data. Hard-coded dependencies can be avoided by wrapping the adaptive_sampling
import in a try/except
clause:
class MD:
# Your MD code
...
def get_sampling_data(self):
try:
from adaptive_sampling.interface.sampling_data import SamplingData
mass = ...
coords = ...
forces = ...
epot = ...
temp = ...
natoms = ...
step = ...
dt = ...
return SamplingData(mass, coords, forces, epot, temp, natoms, step, dt)
except ImportError as e:
raise NotImplementedError("`get_sampling_data()` is missing `adaptive_sampling` package") from e
The bias force on atoms in the N-th step can be obtained by calling step_bias()
on any sampling algorithm:
from adaptive_sampling.sampling_tools import *
# initialize MD code
the_md = MD(...)
# collective variable
atom_indices = [0, 1]
minimum = 1.0 # Angstrom
maximum = 3.5 # Angstrom
bin_width = 0.1 # Angstrom
collective_var = [["distance", atom_indices, minimum, maximum, bin_width]]
# extended-system eABF
ext_sigma = 0.1 # thermal width of coupling between CV and extended variable in Angstrom
ext_mass = 20.0 # mass of extended variable
the_bias = eABF(
ext_sigma,
ext_mass,
the_md,
collective_var,
output_freq=10,
f_conf=100,
equil_temp=300.0
)
for md_step in range(steps):
# propagate langevin dynamics and calc forces
...
bias_force = eABF.step_bias(write_output=True, write_traj=True)
the_md.forces += bias_force
...
# finish md_step
This automatically writes an on-the-fly free energy estimate in the output file and all necessary data for post-processing in a trajectory file. For extended-system dynamics unbiased statistical weights of individual frames can be obtained using the MBAR estimator:
import numpy as np
from adaptive_sampling.processing_tools import mbar
traj_dat = np.loadtxt('CV_traj.dat', skiprows=1)
ext_sigma = 0.1 # thermal width of coupling between CV and extended variable
# grid for free energy profile can be different than during sampling
minimum = 1.0
maximum = 3.5
bin_width = 0.1
grid = np.arange(minimum, maximum, bin_width)
cv = traj_dat[:,1] # trajectory of collective variable
la = traj_dat[:,2] # trajectory of extended system
# run MBAR and compute free energy profile and probability density from statistical weights
traj_list, indices, meta_f = mbar.get_windows(grid, cv, la, ext_sigma, equil_temp=300.0)
exp_U, frames_per_traj = mbar.build_boltzmann(
traj_list,
meta_f,
equil_temp=300.0
)
weights = mbar.run_mbar(
exp_U,
frames_per_traj
max_iter=10000,
conv=1.0e-7,
conv_errvec=1.0,
outfreq=100,
)
pmf, rho = mbar.pmf_from_weights(grid, cv[indices], weights, equil_temp=300.0)
Documentation:
Code documentation can be created with pdoc3:
$ pip install pdoc3
$ pdoc --html adaptive_sampling -o doc/
References:
- Comer et. al., J. Phys. Chem. B (2015); https://doi.org/10.1021/jp506633n
- Lesage et. al., J. Phys. Chem. B (2017); https://doi.org/10.1021/acs.jpcb.6b10055
- Shirts et. al., J. Chem. Phys. (2008); https://doi.org/10.1063/1.2978177
- Hulm et. al., J. Chem. Phys. (2022); https://doi.org/10.1063/5.0095554
- Barducci et. al., Phys. rev. lett. (2008); https://doi.org/10.1103/PhysRevLett.100.020603
- Fu et. al., J. Phys. Chem. Lett. (2018); https://doi.org/10.1021/acs.jpclett.8b01994
- Miao et. al., J. Chem. Theory Comput. (2015); https://doi.org/10.1021/acs.jctc.5b00436
- Chen et. al., J. Chem. Theory Comput. (2021); https://doi.org/10.1021/acs.jctc.1c00103
This and Related Work:
- Hulm et. al., J. Chem. Phys. (2022); https://doi.org/10.1063/5.0095554
- Dietschreit et al., J. Chem. Phys., 157, 084113 (2022).; https://aip.scitation.org/doi/10.1063/5.0102075
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file adaptive_sampling-2.0.2.tar.gz
.
File metadata
- Download URL: adaptive_sampling-2.0.2.tar.gz
- Upload date:
- Size: 34.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.9.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 98536a63b50cf2e5486bbd441afa919266ef658458cab0277cc37d6af4ab17a6 |
|
MD5 | d2d2e4e9bdd9d4fa7ebc2099b9d4cf25 |
|
BLAKE2b-256 | 73d97f40c66de6427bb1acf435e84dc9686cc5900f08566bfacc7f81baf64ad9 |