Skip to main content

A package implementing adaptive lasso for logistic regression

Project description

AdaptoLogit package

Introduction

AdaptoLogit is a python package that proposes the implementation of adaptive lasso to solve logistic regression models.

Dependencies

AdaptoLogit requires:

  • Numpy >= 1.2
  • SciPy >= 1.7.0
  • Scikit-learn >= 1.0

User installation

If you already have a working installation of numpy, scipy and scikit-learn, the easiest way to install AdaptoLogit is using pip:

pip install AdaptoLogit

Usage Example

In the following example, the package is used to apply adaptive lasso logistic regression on simulated binary data. Cross validation is carried out to get the optimal subset of parameters for the data.

from sklearn.model_selection import GridSearchCV
import numpy as np
import AdaptoLogit as al
from sklearn.datasets import make_classification

# Generate data
X, y = make_classification(random_state=8) # 100 samples, 20 features, 2 informative

# Estimate weights
weight = al.AdaptiveWeights(power_weight=(0.5,1,1.5))
weight.fit(X, y)

# Build model 
model = al.AdaptiveLogistic()

# Cross validation for best subset of parameters
param_grid = {'C':[1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'weight_array': weight.lasso_weights_,
            'solver': ['saga','liblinear'], 'max_iter': [1000, 10000]}     
grid_search = GridSearchCV(model, param_grid, cv=3, scoring='accuracy', n_jobs=8)
grid_search.fit(X, y)
final_model = grid_search.best_estimator_

# Model coefficients
print("Model coefficients ", final_model.coef_)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

AdaptoLogit-0.0.1.tar.gz (20.0 kB view details)

Uploaded Source

File details

Details for the file AdaptoLogit-0.0.1.tar.gz.

File metadata

  • Download URL: AdaptoLogit-0.0.1.tar.gz
  • Upload date:
  • Size: 20.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.5

File hashes

Hashes for AdaptoLogit-0.0.1.tar.gz
Algorithm Hash digest
SHA256 0265f2796db3c00c10c79a3b2fe57a458524f36e34981f5c2c01e41803876fa1
MD5 4dd8c630f60cea577256b80a98b2b7bf
BLAKE2b-256 3817239b6ac60a526a79c0a4c1263e2fa9dcffd569916efb0a5eeadafbf60938

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page