Skip to main content

ADA Sentiment Explorer Python API

Project description

logo

ADA Sentiment Explorer API to pandas

Introduction

Alpha Data Analytics ("ADA") is a data analytics company, flagman product is Alternative Data Sentiment Explorer (“ADASE”), build on a sentiment monitoring technology that turns mentions from 2000+ news sources and social platforms into real-time machine-readable indicators. It is designed to provide an unbiased understanding of people opinions as a major driving force of capital markets, political processes, demand prediction or marketing.
ADA vision is to democratise advanced AI-system supporting business decisions, that benefit data proficient people and small- or medium- quantitative companies.

ADASE supports keyword and topic engines, details below

Keyword search engine

Query syntax

  • Each condition is placed inside of round brackets (), where
    • + indicates a search term must be found
    • and - excludes it
  • Multiple conditions can be combined with logical operators
    • OR
    • AND
  • Also you can separate by comma "," multiple requests for a parallel processing as below:
    • "(+Bitcoin -Luna) OR (+ETH), (+crypto)"
    • Will return matches to data that hit Bitcoin or ETH but not Luna for the first query, and crypto for the second
    • Amount of sub-queries is not limited and is executed in parallel

To use API you need to provide API credentials as environment variables

import os
os.environ['ADA_API_USERNAME'] = "myaccount@email.com"
os.environ['ADA_API_PASSWORD'] = "p@ssw0rd"

adase_api.query.Explorer class has more configurations described in the docstring

from adase_api import query

q = "(+Bitcoin -Luna) OR (+ETH), (+crypto)"
df = query.Explorer.get(q, process_count=1, engine='keyword', start_date='2022-01-01', end_date='2022-05-29')
df.unstack(2).tail()

Returns coverage, hits, score and score_coverage to a pandas dataframe

query                      (+Bitcoin -Luna) OR (+ETH)                      (+crypto)                     
                                       coverage       hits     score  coverage       hits     score
date_time           source                                                                         
2022-05-27 11:00:00 all                0.026520  36.676056  0.218439  0.055207  76.487535  0.267412
2022-05-27 12:00:00 all                0.026497  36.668539  0.216516  0.055200  76.518006  0.267331
2022-05-27 13:00:00 all                0.026443  36.616246  0.215001  0.055238  76.554017  0.266730
2022-05-27 14:00:00 all                0.026442  36.605042  0.213506  0.055187  76.481994  0.266553
2022-05-27 15:00:00 all                0.026452  36.647059  0.212794  0.055199  76.512465  0.265416

Since data is weekly seasonal, a 7-day rolling average is applied by default

Topic embedding search engine

Topic syntax

  • In contrast with keyword based search, topic syntax allows to query data in a fuzzy way. It works the best when 2-5 words describe some wider concepts, examples:
    • "NASDAQ technology index"
    • "Airline travel demand"
    • "Energy disruptions in Europe"
  • Such queries will include related concept
    • for "NASDAQ technology index" it might also consider terms as "Dow Jones", "FAANG", "FTSE" etc.
    • exact structure depends mostly on how topics co-occur together
    • intuition behind is that NASDAQ is US tech stock index, but if data contains strong signals from FTSE, a British blue chip index, or Dow Jones, less tech heavy index, this will also have an impact on query of interest
    • to reflect changing world situation, underlying models are constantly re-trained making sure relations are up-to-date
from adase_api import query

q = "inflation rates, OPEC cartel"
df = query.Explorer.get(q, process_count=1, engine='topic', start_date='2022-01-01')
df.unstack(2).tail(10)
query                      inflation rates                      OPEC cartel                     
                                  coverage       hits     score    coverage       hits     score
date_time           source                                                                      
2022-05-26 07:00:00 media         0.002947   6.220238 -0.059335    0.001945   5.619048 -0.034639
                    social        0.008054  50.779762  0.023118    0.003774  29.595238  0.022136
2022-05-26 08:00:00 avg           0.004778  24.073413  0.002614    0.002553  15.003968  0.007849
                    corp          0.000297   0.565476  0.054003    0.000384   0.761905  0.050364
                    media         0.002935   6.172619 -0.060830    0.001940   5.595238 -0.034008
                    social        0.008023  50.416667  0.024123    0.003775  29.482143  0.020868
2022-05-26 09:00:00 avg           0.004770  23.942460  0.004983    0.002540  14.908730  0.009729
                    corp          0.000297   0.565476  0.054003    0.000384   0.761905  0.050364
                    media         0.002950   6.125000 -0.057586    0.001922   5.523810 -0.028692
                    social        0.007991  50.202381  0.025980    0.003767  29.363095  0.019497

it's visible data feed comes detailed per source type:

  • media indicates newspapers, TV, radio and other mass media
  • social includes social platforms and blogs
  • corp covers corporate communication as company newsrooms and regulatory filings
  • avg is a weighted average of all

In case you don't have yet the credentials, you can sign up for free

  • Data available since January 1, 2006
  • Easy way to explore or backtest
  • In a trial version data lags 24-hours
  • Probably something else? Hopefully this data could inspire for some innovative solutions to your problem

You can follow us on LinkedIn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

adase-api-0.0.1.tar.gz (33.3 kB view details)

Uploaded Source

Built Distribution

adase_api-0.0.1-py3-none-any.whl (9.7 kB view details)

Uploaded Python 3

File details

Details for the file adase-api-0.0.1.tar.gz.

File metadata

  • Download URL: adase-api-0.0.1.tar.gz
  • Upload date:
  • Size: 33.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.7

File hashes

Hashes for adase-api-0.0.1.tar.gz
Algorithm Hash digest
SHA256 3914c915f776be2245fb6d55700cded8b55c78fdd914c4cd201dd2bc50f36746
MD5 691c30937c7aaab4b89e395089525c57
BLAKE2b-256 ec242ece174b3fa40f30b8c215197321e7e099f41e73d777e8f7af523754fa6c

See more details on using hashes here.

File details

Details for the file adase_api-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: adase_api-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 9.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.7

File hashes

Hashes for adase_api-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4f48885b70f9fa9c3d014f9420af00f91e1d3d8f0faf463be8187425dd6c9064
MD5 e29c4eb554f47bac8f553bbfdb96059f
BLAKE2b-256 50cf131654da5d708ff6ab0d2e3d79b62754a810a0d9c9437d0136e5711ec798

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page