Skip to main content

Convert ArangoDB graphs to DGL & vice-versa.

Project description

ArangoDB-DGL Adapter

build CodeQL Coverage Status Last commit

PyPI version badge Python versions badge

License Code style: black Downloads

The ArangoDB-DGL Adapter exports Graphs from ArangoDB, the multi-model database for graph & beyond, into Deep Graph Library (DGL), a python package for graph neural networks, and vice-versa.

Note: The ArangoDB-DGL Adapter currently only supports the use of PyTorch as the DGL backend. Support for MXNet and Tensorflow will be added in the future.

About DGL

The Deep Graph Library (DGL) is an easy-to-use, high performance and scalable Python package for deep learning on graphs. DGL is framework agnostic, meaning if a deep graph model is a component of an end-to-end application, the rest of the logics can be implemented in any major frameworks, such as PyTorch, Apache MXNet or TensorFlow.

Installation

Latest Release

pip install adbdgl-adapter

Current State

pip install git+https://github.com/arangoml/dgl-adapter.git

Quickstart

Open In Collab

Also available as an ArangoDB Lunch & Learn session: Graph & Beyond Course #2.8

import dgl
import torch
import pandas

from arango import ArangoClient
from adbdgl_adapter import ADBDGL_Adapter, ADBDGL_Controller
from adbdgl_adapter.encoders import IdentityEncoder, CategoricalEncoder

# Connect to ArangoDB
db = ArangoClient().db()

# Instantiate the adapter
adbdgl_adapter = ADBDGL_Adapter(db)

# Create a DGL Heterogeneous Graph
fake_hetero = dgl.heterograph({
    ("user", "follows", "user"): (torch.tensor([0, 1]), torch.tensor([1, 2])),
    ("user", "follows", "topic"): (torch.tensor([1, 1]), torch.tensor([1, 2])),
    ("user", "plays", "game"): (torch.tensor([0, 3]), torch.tensor([3, 4])),
})
fake_hetero.nodes["user"].data["features"] = torch.tensor([21, 44, 16, 25])
fake_hetero.nodes["user"].data["label"] = torch.tensor([1, 2, 0, 1])
fake_hetero.nodes["game"].data["features"] = torch.tensor([[0, 0], [0, 1], [1, 0], [1, 1], [1, 1]])
fake_hetero.edges[("user", "plays", "game")].data["features"] = torch.tensor([[6, 1], [1000, 0]])

DGL to ArangoDB

############################
# 1.1: without a Metagraph #
############################

adb_g = adbdgl_adapter.dgl_to_arangodb("FakeHetero", fake_hetero)

#########################
# 1.2: with a Metagraph #
#########################

# Specifying a Metagraph provides customized adapter behaviour
metagraph = {
    "nodeTypes": {
        "user": {
            "features": "user_age",  # 1) you can specify a string value for attribute renaming
            "label": label_tensor_to_2_column_dataframe,  # 2) you can specify a function for user-defined handling, as long as the function returns a Pandas DataFrame
        },
        # 3) You can specify set of strings if you want to preserve the same DGL attribute names for the node/edge type
        "game": {"features"} # this is equivalent to {"features": "features"}
    },
    "edgeTypes": {
        ("user", "plays", "game"): {
            # 4) you can specify a list of strings for tensor dissasembly (if you know the number of node/edge features in advance)
            "features": ["hours_played", "is_satisfied_with_game"]
        },
    },
}

def label_tensor_to_2_column_dataframe(dgl_tensor: torch.Tensor, adb_df: pandas.DataFrame) -> pandas.DataFrame:
    """A user-defined function to create two
    ArangoDB attributes out of the 'user' label tensor

    :param dgl_tensor: The DGL Tensor containing the data
    :type dgl_tensor: torch.Tensor
    :param adb_df: The ArangoDB DataFrame to populate, whose
        size is preset to the length of **dgl_tensor**.
    :type adb_df: pandas.DataFrame
    :return: The populated ArangoDB DataFrame
    :rtype: pandas.DataFrame
    """
    label_map = {0: "Class A", 1: "Class B", 2: "Class C"}

    adb_df["label_num"] = dgl_tensor.tolist()
    adb_df["label_str"] = adb_df["label_num"].map(label_map)

    return adb_df


adb_g = adbdgl_adapter.dgl_to_arangodb("FakeHetero", fake_hetero, metagraph, explicit_metagraph=False)

#######################################################
# 1.3: with a Metagraph and `explicit_metagraph=True` #
#######################################################

# With `explicit_metagraph=True`, the node & edge types omitted from the metagraph will NOT be converted to ArangoDB.
adb_g = adbdgl_adapter.dgl_to_arangodb("FakeHetero", fake_hetero, metagraph, explicit_metagraph=True)

########################################
# 1.4: with a custom ADBDGL Controller #
########################################

class Custom_ADBDGL_Controller(ADBDGL_Controller):
    def _prepare_dgl_node(self, dgl_node: dict, node_type: str) -> dict:
        """Optionally modify a DGL node object before it gets inserted into its designated ArangoDB collection.

        :param dgl_node: The DGL node object to (optionally) modify.
        :param node_type: The DGL Node Type of the node.
        :return: The DGL Node object
        """
        dgl_node["foo"] = "bar"
        return dgl_node

    def _prepare_dgl_edge(self, dgl_edge: dict, edge_type: tuple) -> dict:
        """Optionally modify a DGL edge object before it gets inserted into its designated ArangoDB collection.

        :param dgl_edge: The DGL edge object to (optionally) modify.
        :param edge_type: The Edge Type of the DGL edge. Formatted
            as (from_collection, edge_collection, to_collection)
        :return: The DGL Edge object
        """
        dgl_edge["bar"] = "foo"
        return dgl_edge


adb_g = ADBDGL_Adapter(db, Custom_ADBDGL_Controller()).dgl_to_arangodb("FakeHetero", fake_hetero)

ArangoDB to DGL

# Start from scratch!
db.delete_graph("FakeHetero", drop_collections=True, ignore_missing=True)
adbdgl_adapter.dgl_to_arangodb("FakeHetero", fake_hetero)

#######################
# 2.1: via Graph name #
#######################

# Due to risk of ambiguity, this method does not transfer attributes
dgl_g = adbdgl_adapter.arangodb_graph_to_dgl("FakeHetero")

#############################
# 2.2: via Collection names #
#############################

# Due to risk of ambiguity, this method does not transfer attributes
dgl_g = adbdgl_adapter.arangodb_collections_to_dgl("FakeHetero", v_cols={"user", "game"}, e_cols={"plays"})

######################
# 2.3: via Metagraph #
######################

# Transfers attributes "as is", meaning they are already formatted to DGL data standards.
# Learn more about the DGL Data Standards here: https://docs.dgl.ai/guide/graph.html#guide-graph
metagraph_v1 = {
    "vertexCollections": {
        # Move the "features" & "label" ArangoDB attributes to DGL as "features" & "label" Tensors
        "user": {"features", "label"}, # equivalent to {"features": "features", "label": "label"}
        "game": {"dgl_game_features": "features"},
        "topic": {},
    },
    "edgeCollections": {
        "plays": {"dgl_plays_features": "features"}, 
        "follows": {}
    },
}

dgl_g = adbdgl_adapter.arangodb_to_dgl("FakeHetero", metagraph_v1)

#################################################
# 2.4: via Metagraph with user-defined encoders #
#################################################

# Transforms attributes via user-defined encoders
metagraph_v2 = {
    "vertexCollections": {
        "Movies": {
            "features": {  # Build a feature matrix from the "Action" & "Drama" document attributes
                "Action": IdentityEncoder(dtype=torch.long),
                "Drama": IdentityEncoder(dtype=torch.long),
            },
            "label": "Comedy",
        },
        "Users": {
            "features": {
                "Gender": CategoricalEncoder(), # CategoricalEncoder(mapping={"M": 0, "F": 1}),
                "Age": IdentityEncoder(dtype=torch.long),
            }
        },
    },
    "edgeCollections": {"Ratings": {"weight": "Rating"}},
}

dgl_g = adbdgl_adapter.arangodb_to_dgl("imdb", metagraph_v2)

##################################################
# 2.5: via Metagraph with user-defined functions #
##################################################

# Transforms attributes via user-defined functions
metagraph_v3 = {
    "vertexCollections": {
        "user": {
            "features": udf_user_features,  # supports named functions
            "label": lambda df: torch.tensor(df["label"].to_list()),  # also supports lambda functions
        },
        "game": {"features": udf_game_features},
    },
    "edgeCollections": {
        "plays": {"features": (lambda df: torch.tensor(df["features"].to_list()))},
    },
}

def udf_user_features(user_df: pandas.DataFrame) -> torch.Tensor:
   # user_df["features"] = ...
    return torch.tensor(user_df["features"].to_list())


def udf_game_features(game_df: pandas.DataFrame) -> torch.Tensor:
    # game_df["features"] = ...
    return torch.tensor(game_df["features"].to_list())


dgl_g = adbdgl_adapter.arangodb_to_dgl("FakeHetero", metagraph_v3)

Development & Testing

Prerequisite: arangorestore

  1. git clone https://github.com/arangoml/dgl-adapter.git
  2. cd dgl-adapter
  3. (create virtual environment of choice)
  4. pip install -e .[dev]
  5. (create an ArangoDB instance with method of choice)
  6. pytest --url <> --dbName <> --username <> --password <>

Note: A pytest parameter can be omitted if the endpoint is using its default value:

def pytest_addoption(parser):
    parser.addoption("--url", action="store", default="http://localhost:8529")
    parser.addoption("--dbName", action="store", default="_system")
    parser.addoption("--username", action="store", default="root")
    parser.addoption("--password", action="store", default="")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

adbdgl_adapter-3.0.1.tar.gz (41.2 kB view details)

Uploaded Source

Built Distribution

adbdgl_adapter-3.0.1-py3-none-any.whl (29.5 kB view details)

Uploaded Python 3

File details

Details for the file adbdgl_adapter-3.0.1.tar.gz.

File metadata

  • Download URL: adbdgl_adapter-3.0.1.tar.gz
  • Upload date:
  • Size: 41.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for adbdgl_adapter-3.0.1.tar.gz
Algorithm Hash digest
SHA256 d68d78d29442dd9f69cd46a9ca68fe0b96eb61ea29e476ee8af16696e7517d07
MD5 80f3ca6b5affcfce739f920ee25eb4a9
BLAKE2b-256 fa7874fde3a53cc990a3c3bac203267bbf327e00ab98aac6cd8c1f91b7b47567

See more details on using hashes here.

File details

Details for the file adbdgl_adapter-3.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for adbdgl_adapter-3.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 770698f054170169001ac7f460e0e1e83377357ed704cd813272a58e57d9f5fb
MD5 1ff6c115bf486b6a0c77197bb42d2261
BLAKE2b-256 6ff1b82e908a7756dcfbf4b9ab70700964ba2a1f158b69c872e450421e4deaa3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page