Skip to main content

An Agent Based Modelling Engine tailored for Reinforcement Learning.

Project description

Build Status Coverage Status License: GPL v3

Designed and developed by Sever Topan

Features

Engine

At its core, AdjSim is an agent-based modelling engine. It allows users to define simulation environments through which agents interact through ability casting and timestep iteration. The framework is targeted towards agents that behave intelligently, for example a bacterium chasing down food. However, the framework is extremely flexible - from enabling physics simulation to defining an environment in which Conway’s Game of Life plays out! AdjSim aims to be a foundational architecture on top of which reinforcement learning can be built.

Graphical Simulation Representation

The simulation can be viewed in real time as it unfolds, with graphics are rendered and animated using PyQt5. Below are four of the distinct examples packadged with AdjSim, ranging from bacteria to moon system simulation.

Bacteria Demo Predator Prey Demo
GOL Demo Jupiter Demo

Post Simulation Analysis Tools

Agent properties can be marked for tracking during simulation, allowing for viewing the results of these values once the simulation completes. For example, we can track the population of each different type of agent, or the efficacy of the agent’s ability to meet its intelligence module-defined goals.

| QLearning Graph| Predator Prey Graph | |:————-:|:————-:|

Intelligence Module

Perhaps the most computationally interesting aspect of AdjSim lies in its intelligence module. It allows agents to set goals (for example, the goal of a bacterium may be to maximize its calories), and assess its actions in terms of its ability to meet its goals. This allows the agents to learn which actions are best used in a given situation. Currently the intelligence module implements Q-Learning, but more advanced reinforcement learning techniques are coming soon!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
adjsim-2.1.0-py3-none-any.whl (25.9 kB) Copy SHA256 hash SHA256 Wheel py3 Nov 20, 2017
adjsim-2.1.0.tar.gz (24.6 kB) Copy SHA256 hash SHA256 Source None Nov 20, 2017

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page