admet_ai
Project description
ADMET-AI
This git repo contains the code for ADMET-AI, an ADMET prediction platform that uses Chemprop-RDKit models trained on ADMET datasets from the Therapeutics Data Commons (TDC). ADMET-AI can be used to make ADMET predictions on new molecules via the command line, via the Python API, or via a web server. A live web server hosting ADMET-AI is at admet.ai.greenstonebio.com
ADMET-AI will be described in a forthcoming paper.
Instructions to reproduce the results in our paper are in docs/reproduce.md.
Installation
ADMET-AI can be installed in a few minutes on any operating system using pip (optionally within a conda environment). If a GPU is available, it will be used by default, but the code can also run on CPUs only.
Optionally, create a conda environment.
conda create -y -n admet_ai python=3.10
conda activate admet_ai
Install ADMET-AI via pip.
pip install admet_ai
Alternatively, clone the repo and install ADMET-AI locally.
git clone https://github.com/swansonk14/admet_ai.git
cd admet_ai
pip install -e .
By default, the pip installation only includes dependencies required for making ADMET predictions, either via the command line or via the Python API. To install dependencies required for processing TDC data or plotting TDC results, run pip install admet_ai[tdc]
. To install dependencies required for hosting the ADMET-AI web server, run pip install admet_ai[web]
.
If there are version issues with the required packages, create a conda environment with specific working versions of the packages as follows.
pip install -r requirements.txt
pip install -e .
Note: If you get the issue ImportError: libXrender.so.1: cannot open shared object file: No such file or directory
, run conda install -c conda-forge xorg-libxrender
.
Predicting ADMET properties
ADMET-AI can be used to make ADMET predictions in three ways: (1) as a command line tool, (2) as a Python module, or (3) as a web server.
Command line tool
ADMET predictions can be made on the command line with the admet_predict
command, as illustrated below.
admet_predict \
--data_path data.csv \
--save_path preds.csv \
--smiles_column smiles
This command assumes that there exists a file called data.csv
with SMILES strings in the column smiles
. The predictions will be saved to a file called preds.csv
.
Python module
ADMET predictions can be made using the predict
function in the admet_ai
Python module, as illustrated below.
from admet_ai import ADMETModel
model = ADMETModel()
preds = model.predict(smiles="O(c1ccc(cc1)CCOC)CC(O)CNC(C)C")
If a SMILES string is provided, then preds
is a dictionary mapping property names to values. If a list of SMILES strings is provided, then preds
is a Pandas DataFrame where the index is the SMILES and the columns are the properties.
Web server
ADMET predictions can be made using the ADMET-AI web server, as illustrated below. Note: Running the following command requires additional web dependencies (i.e., pip install admet_ai[web]
).
admet_web
Then navigate to http://127.0.0.1:5000 to view the website.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file admet_ai-1.0.0.tar.gz
.
File metadata
- Download URL: admet_ai-1.0.0.tar.gz
- Upload date:
- Size: 19.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0e34343ff8fc94fdab00f301f1ec6b47bfd95b4b31da5c131d80c836f1225087 |
|
MD5 | f7a5d56c16ccadc174909b28cc5e728d |
|
BLAKE2b-256 | 81ee19ac34d68d66ad6110c825a1e69399a9fe58470ba5216e8676ea9394f0ef |