Skip to main content

Adversarial validation for train-test datasets

Project description

The code is Python 3

What is Adversarial Validation? The objective of any predictive modelling project is to create a model using the training data, and afterwards apply this model to the test data. However, for the best results it is essential that the training data is a representative sample of the data we intend to use it on (i.e. the test data), otherwise our model will, at best, under-perform, or at worst, be completely useless.

*Adversarial Validation* is a very clever and very simple way to let us know if our test data and our training data are similar; we combine our train and test data, labeling them with say a 0 for the training data and a 1 for the test data, mix them up, then see if we are able to correctly re-identify them using a binary classifier.

If we cannot correctly classify them, i.e. we obtain an area under the [receiver operating characteristic curve](https://en.wikipedia.org/wiki/Receiver_operating_characteristic) (ROC) of 0.5 then they are indistinguishable and we are good to go.

However, if we can classify them (ROC > 0.5) then we have a problem, either with the whole dataset or more likely with some features in particular, which are probably from different distributions in the test and train datasets. If we have a problem, we can look at the feature that was most out of place. The problem may be that there were values that were only seen in, say, training data, but not in the test data. If the contribution to the ROC is very high from one feature, it may well be a good idea to remove that feature from the model.

Adversarial Validation to reduce overfitting The key to avoid overfitting is to create a situation where the local cross-vlidation (CV) score is representative of the competition score. When we have a ROC of 0.5 then your local data is representative of the test data, thus your local CV score should now be representative of the Public LB score.

Procedure:

  • drop the training data target column

  • label the test and train data with 0 and 1 (it doesn’t really matter which is which)

  • combine the training and test data into one big dataset

  • perform the binary classification, for example using XGboost

  • look at our AUC ROC score

Installation

Fast install:

pip install adval

Example on Mobile Price Classification Dataset

from adval.validation import adVal

# In this dataset:
# target = "price_range"
# 95 = ½ threshold similarity ratio you want
# Id Column = "id"
# run module
k = adVal(train, test, 95,  "price_range", "id")

# get auc_score
k.auc_score()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

adval-0.0.8.tar.gz (4.2 kB view details)

Uploaded Source

Built Distribution

adval-0.0.8-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file adval-0.0.8.tar.gz.

File metadata

  • Download URL: adval-0.0.8.tar.gz
  • Upload date:
  • Size: 4.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.4

File hashes

Hashes for adval-0.0.8.tar.gz
Algorithm Hash digest
SHA256 a585cd7348393808d7b231d8c3a53f8c0f81b5baf54f371dfc5658336abf6985
MD5 eae4dbf22e3169c8c15e3c8010ac5c5b
BLAKE2b-256 465a500b6ad864afcce703a589db2c343e430c993fff6fa71a814589fbd9be4e

See more details on using hashes here.

File details

Details for the file adval-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: adval-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 4.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.4

File hashes

Hashes for adval-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 f8bb50c39e12ec4bc642a2f91d82b937fb9424af263b6112787ca480c7a409f2
MD5 5aa3a612f3d44ee64bad7e8e7e3f84c2
BLAKE2b-256 a3791e1f21e8e1b1f65672782874545066ea49f08a7cc3b12933ebc8288573a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page