An advanced data processing pipeline
Reason this release was yanked:
duplicate
Project description
Advanced Data Processing Pipeline
This project implements a sophisticated data processing pipeline using Python, designed to handle large-scale data processing tasks efficiently. The pipeline includes various stages such as data loading, cleaning, transformation, analysis, and visualization.
This package is available on PyPI, and you can view it at the provided URL: https://pypi.org/project/advanced-data-processing/0.1.0/.
Features
- Flexible data loading from various sources (CSV, Excel, JSON, Parquet, SQL databases, APIs, S3)
- Efficient data cleaning and preprocessing using Dask for large datasets
- Advanced data transformation techniques (scaling, encoding, feature engineering)
- Text analytics capabilities (sentiment analysis, summarization)
- Named Entity Recognition (NER) for extracting entities from text data
- Topic modeling for uncovering latent topics in text corpora
- Data visualization tools for exploratory data analysis
- Feature selection and dimensionality reduction techniques
- Integration with machine learning models for predictive analytics
- Robust error handling and logging mechanisms
- Configurable pipeline steps via YAML configuration files
- Distributed processing and caching for improved performance
- Automatic feature engineering
- Handling of imbalanced datasets
- Automatic hyperparameter tuning
Requirements
See requirements.txt
for a full list of dependencies. Key libraries include:
- pandas
- dask
- dask-ml
- scikit-learn
- nltk
- spacy
- gensim
- matplotlib
- seaborn
- imbalanced-learn
Installation
You can install the package directly from PyPI:
pip install advanced-data-processing
Alternatively, if you are working from a local clone of the repository:
Install the required dependencies:
pip install -r requirements.txt
To build and install the package locally:
pip install -e .
Usage
Basic Usage
To use the package in another Python project:
from advanced_data_processing import process_data, load_data, clean_data
# Use the functions as needed
data = load_data("path/to/your/data.csv")
cleaned_data = clean_data(data)
processed_data = process_data(cleaned_data, steps=['transform', 'feature_engineering'])
Configuration
Configure your pipeline in config.yaml
:
source: 'path/to/your/data.csv'
steps: ['load', 'clean', 'transform']
output_file: 'path/to/output.csv'
# Add other configuration parameters as needed
The config.yaml
file should include the following parameters:
source
: Path to the input data filesteps
: List of processing steps to executeoutput_file
: Path for the processed output filefile_type
: Type of the input file (e.g., 'csv', 'json', 'parquet')text_column
: Name of the column containing text data (for text analytics)model_type
: Type of model to use for predictive analytics
Command-line Usage
Run the pipeline from the command line:
adp --config config.yaml
Or:
python data_processing/main.py --config config.yaml
Command-line Arguments
You can customize the pipeline execution with various command-line arguments:
--resume
: Resume from a saved pipeline state--plugins
: Load custom plugins (specify paths to plugin files)--n_workers
: Number of workers for parallel processing--scheduler_address
: Address of the Dask scheduler for distributed processing--visualize
: Generate visualizations--analyze_text
: Perform text analytics--use_cache
: Use cached results--generate_report
: Generate a comprehensive report--auto_feature_engineering
: Perform automatic feature engineering--handle_imbalanced
: Handle imbalanced datasets--auto_tune
: Perform automatic hyperparameter tuning
Examples
Generate visualizations:
python data_processing/main.py --config config.yaml --visualize
Perform text analytics:
python data_processing/main.py --config config.yaml --analyze_text
Use cached results and generate a report:
python data_processing/main.py --config config.yaml --use_cache --generate_report
Perform automatic feature engineering and handle imbalanced data:
python data_processing/main.py --config config.yaml --auto_feature_engineering --handle_imbalanced
Advanced Features
Custom Plugins
You can extend the pipeline's functionality using custom plugins:
- Create a Python file with your custom function(s).
- Use the
--plugins
argument to specify the path to your plugin file(s) when running the pipeline.
Resuming from a Saved State
You can resume the pipeline from a previously saved state using the --resume
option:
python data_processing/main.py --config config.yaml --resume pipeline_state_step_name.pkl
Distributed Processing
This pipeline uses Dask for distributed processing. You can specify the number of workers or provide a Dask scheduler address:
python data_processing/main.py --config config.yaml --n_workers 4
or
python data_processing/main.py --config config.yaml --scheduler_address tcp://scheduler-address:8786
You can also set a memory limit for Dask workers:
python data_processing/main.py --config config.yaml --n_workers 4 --memory_limit 4GB
Caching and Intermediate Results
To use caching and save intermediate results:
python data_processing/main.py --config config.yaml --use_cache --save_intermediate --intermediate_path ./intermediate/
Automatic Hyperparameter Tuning
To perform automatic hyperparameter tuning for machine learning models:
python data_processing/main.py --config config.yaml --auto_tune
Customizing the Pipeline
The pipeline can be customized for different types of datasets by modifying the configuration file. Here are some examples:
For Time-Series Data:
feature_engineering:
create_time_features: true
time_column: 'timestamp'
data_transformation:
numerical_features:
- 'value'
- 'year'
- 'month'
- 'day'
categorical_features:
- 'day_of_week'
scaling_method: 'minmax'
For NLP Data:
feature_engineering:
create_text_features: true
text_columns:
- 'text_content'
data_transformation:
text_features:
- 'text_content'
text_vectorization_method: 'tfidf'
For Tabular Data:
feature_engineering:
create_polynomial_features: true
create_interaction_features: true
data_transformation:
numerical_features:
- 'feature1'
- 'feature2'
categorical_features:
- 'category1'
- 'category2'
scaling_method: 'standard'
encoding_method: 'onehot'
Pipeline Steps
The main processing steps are defined in the process_data
function. These include:
Data Loading
The pipeline supports loading data from various sources.
Data Cleaning
Data cleaning operations include handling missing values, outliers, and duplicates.
Data Transformation
The pipeline offers various data transformation techniques.
Feature Engineering
Automatic feature engineering is supported.
Handling Imbalanced Data
The pipeline can handle imbalanced datasets.
Error Handling
Robust error handling is implemented throughout the pipeline.
Comprehensive Report
To generate a comprehensive report of the data processing steps and results, use the --generate_report
flag:
python data_processing/main.py --config config.yaml --generate_report
The report includes:
- Configuration details
- Completed processing steps
- Data shape and types
- Summary statistics
- Output file location
The report is saved as 'pipeline_report.txt' in the project directory.
Example Usage
Here's a detailed example of how to use the pipeline:
from advanced_data_processing import process_data, load_config
# Load configuration
config = load_config('config.yaml')
# Process data
processed_data = process_data('path/to/your/data.csv', config=config)
# Save processed data
processed_data.to_csv('processed_data.csv', index=False)
To run the pipeline from the command line with all options:
python main.py --config config.yaml --output processed_data.csv --visualize --analyze_text --extract_entities --model_topics --select_features --reduce_dimensions --validate_schema --summary_stats --auto_feature_engineering --handle_imbalanced --auto_tune
Contributing
Contributions to improve the pipeline are welcome. Please follow these steps:
- Fork the repository
- Create a new branch (
git checkout -b feature-branch
) - Make your changes and commit (
git commit -am 'Add some feature'
) - Push to the branch (
git push origin feature-branch
) - Create a new Pull Request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Documentation
For more detailed usage instructions and examples, please refer to the full documentation here.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file advdpp-0.1.0.tar.gz
.
File metadata
- Download URL: advdpp-0.1.0.tar.gz
- Upload date:
- Size: 5.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 690b1b170eccd5670e1e05f5142aa88de4e9c1130d4255c5cdd52f2773c1a854 |
|
MD5 | 17a2ab606160032d80b50ff338dcc53b |
|
BLAKE2b-256 | 704720058a666850e4dea0c2006a15a2ba578c7cfcce5da1ce33982dde14365e |
File details
Details for the file advdpp-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: advdpp-0.1.0-py3-none-any.whl
- Upload date:
- Size: 4.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2f23e81de47fe549989d346b1f69ec40a3872f95c8ba53eec5de3e4fcaeaa6eb |
|
MD5 | 3625cdd09c86e8ba683aa11d655df361 |
|
BLAKE2b-256 | f44deb8332ddfc7aa4d59650679830699133b4880f55e99bde5e1be5268edcb5 |