Skip to main content

advertools visualizations

Project description

adviz

Get startd quickly and see exmaples below

Install

pip install adviz

How to use

Count unique values in a list of items

value_counts_plus(list('aaaaaaaaabbbbcccddddddddddeeeeeeeeeeeeffffggghhhiijjjjkkkllllmmmmmmmnnooop'))
<style type="text/css"> #T_f4f7a_row0_col1, #T_f4f7a_row0_col3 { background-color: #cebc63; color: #000000; } #T_f4f7a_row0_col2, #T_f4f7a_row0_col4, #T_f4f7a_row8_col1, #T_f4f7a_row8_col3, #T_f4f7a_row9_col1, #T_f4f7a_row9_col3 { background-color: #00224e; color: #f1f1f1; } #T_f4f7a_row1_col1, #T_f4f7a_row1_col3 { background-color: #9d9576; color: #f1f1f1; } #T_f4f7a_row1_col2, #T_f4f7a_row1_col4 { background-color: #293f6e; color: #f1f1f1; } #T_f4f7a_row2_col1, #T_f4f7a_row2_col3 { background-color: #878478; color: #f1f1f1; } #T_f4f7a_row2_col2, #T_f4f7a_row2_col4 { background-color: #51586d; color: #f1f1f1; } #T_f4f7a_row3_col1, #T_f4f7a_row3_col3 { background-color: #5e636f; color: #f1f1f1; } #T_f4f7a_row3_col2, #T_f4f7a_row3_col4 { background-color: #6b6d72; color: #f1f1f1; } #T_f4f7a_row4_col1, #T_f4f7a_row4_col3, #T_f4f7a_row5_col1, #T_f4f7a_row5_col3, #T_f4f7a_row6_col1, #T_f4f7a_row6_col3, #T_f4f7a_row7_col1, #T_f4f7a_row7_col3 { background-color: #013271; color: #f1f1f1; } #T_f4f7a_row4_col2, #T_f4f7a_row4_col4 { background-color: #787877; color: #f1f1f1; } #T_f4f7a_row5_col2, #T_f4f7a_row5_col4 { background-color: #888578; color: #f1f1f1; } #T_f4f7a_row6_col2, #T_f4f7a_row6_col4 { background-color: #979177; color: #f1f1f1; } #T_f4f7a_row7_col2, #T_f4f7a_row7_col4 { background-color: #a89e73; color: #f1f1f1; } #T_f4f7a_row8_col2, #T_f4f7a_row8_col4 { background-color: #b5a86f; color: #f1f1f1; } #T_f4f7a_row9_col2, #T_f4f7a_row9_col4 { background-color: #c2b369; color: #000000; } #T_f4f7a_row10_col1, #T_f4f7a_row10_col2, #T_f4f7a_row10_col3, #T_f4f7a_row10_col4 { background-color: #fee838; color: #000000; } </style>

Counts of data

  data count cum_count perc cum_perc
0 e 12 12 16.2% 16.2%
1 d 10 22 13.5% 29.7%
2 a 9 31 12.2% 41.9%
3 m 7 38 9.5% 51.4%
4 b 4 42 5.4% 56.8%
5 f 4 46 5.4% 62.2%
6 j 4 50 5.4% 67.6%
7 l 4 54 5.4% 73.0%
8 c 3 57 4.1% 77.0%
9 g 3 60 4.1% 81.1%
10 Others: 14 74 18.9% 100.0%

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

adviz-0.0.3.tar.gz (9.9 kB view details)

Uploaded Source

Built Distribution

adviz-0.0.3-py3-none-any.whl (8.9 kB view details)

Uploaded Python 3

File details

Details for the file adviz-0.0.3.tar.gz.

File metadata

  • Download URL: adviz-0.0.3.tar.gz
  • Upload date:
  • Size: 9.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for adviz-0.0.3.tar.gz
Algorithm Hash digest
SHA256 b2ca11d435fb548d2386d5b3636f75a13bf2065c46bef01e16a508f6f356ba82
MD5 43b005faf837dae1b8bbf1f9e540a034
BLAKE2b-256 97fa6e9f04cb5c43542a1e19be3b1bf0f57ac9fa2ec6d650549257ff6d192a20

See more details on using hashes here.

Provenance

File details

Details for the file adviz-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: adviz-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 8.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for adviz-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 a6beb64b24ed78c1b1a48890d467f3004bbfe16321af6093f3590cb34d623581
MD5 e08f73532e0d82149f6e05c7b46f817d
BLAKE2b-256 f1ee60f114ae07a6051142b79b5f5e7c727b13a5ebf4e29203b9dfaa419e58fd

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page