Skip to main content

Python package for AEFA: Artificial electric field algorithm for global optimization

Project description

AEFA

AEFA is a Python library for AEFA: Artificial electric field algorithm, a novel algorithm for solving non-linear optimization problems. The details of the algorithm can be found here at: https://medium.com/artifical-mind/artificial-electric-field-algorithm-for-optimization-fb6f57f413b4 You may access the paper for the same at http://www.sciencedirect.com/science/article/pii/S2210650218305030

Installation

Use the package manager pip to install aefaalgo.

pip install aefaalgo

Usage

from aefaalgo.aefa_optimize import aefa

# returns optimum fitness value and space coordinates
aefa().optimize(N, max_iter, func_num)
Keyword arguments:
N: number of particles in search space

max_iter: number of iterations

func_num: Specifies the function to be optimized

Optional Keyword Arguments: 
tag: specifies whether we want maxima or minima.
0 by default for maximization. Specify tag=1 for minimization.

Rpower: exponent for the normalized distance between the particles.
Default value 1

FCheck: This factor ensures that only 2-6% charges apply force to others in the last iterations.
Set to True by default. 

show_plot: True if you want to visualize convergence to the optimum, False otherwise and default.

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aefaalgo-0.0.5.tar.gz (5.9 kB view details)

Uploaded Source

Built Distribution

aefaalgo-0.0.5-py3-none-any.whl (6.8 kB view details)

Uploaded Python 3

File details

Details for the file aefaalgo-0.0.5.tar.gz.

File metadata

  • Download URL: aefaalgo-0.0.5.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.0

File hashes

Hashes for aefaalgo-0.0.5.tar.gz
Algorithm Hash digest
SHA256 64be1ced460ef46314f8abf8befa75e7d7356402a2229cf5637a99acfa5662ab
MD5 1107e2150fb9164c00cae19ff15575b5
BLAKE2b-256 5b9ed3da1d942d556c3d0d957e51ab8a1d9c2bb2bf30839f455a8e56dbf78ace

See more details on using hashes here.

File details

Details for the file aefaalgo-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: aefaalgo-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 6.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.0

File hashes

Hashes for aefaalgo-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 8c53813a7c1d34d7f57e3989dbc0492040106740e3a4e4ec43fac577b8dc6f43
MD5 a1c2d6b1bdcb2958e052da03f655e3f8
BLAKE2b-256 5842f3d83be2fd7fa567e3b74497d82e20c5ab85202ddcd9402a02c50dc20546

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page