Skip to main content

Numerical model for life history evolution of age-structured populations

Project description

PyPI version Python 3.6+

AEGIS

Aging of Evolving Genomes In Silico (AY-jis, /eɪd͡ʒɪs/)

Numerical model for life history evolution of age-structured populations under customizable ecological scenarios.

How to install

We recommend that you install aegis-sim from PyPI into a virtual environment.

$ pip install aegis-sim

If you will using the jupyter notebook visualization script, you might need to run jupyter nbextension enable --py widgetsnbextension to activate widgets.

Cheat sheet
# Unix/macOS
python3 -m venv aegis-venv
. aegis-venv/bin/activate
python3 -m pip install aegis-sim
# Windows
python -m venv aegis-venv
.\aegis-venv\Scripts\activate
python -m pip install aegis-sim
For developers
# Unix/macOS
git clone git@github.com:valenzano-lab/aegis.git
cd aegis
make install_dev

To check if installation is successful, run aegis -h. If it is, the output will contain Aging of Evolving Genomes In Silico; if not, it will say aegis: command not found.

How to run

  1. Create a configuration file

    Before running a custom AEGIS simulation, you must create a configuration file (in YAML format) which will contain your custom parameter values. List of modifiable parameters, and all relevant details can be found in the wiki. Default parameter values are set in the file default.yml.

    An example of a YAML file:

    # custom.yml
    
    RANDOM_SEED_: 42
    STAGES_PER_SIMULATION_: 10000
    MAX_LIFESPAN: 50
    
  2. Start the simulation

    $ aegis {path/to/file}.yml # In this case, `aegis custom.yml`
    
  3. Inspect the output

    Output files will be created in the {path/to/file} directory (in this case, in the custom directory) which will have the following structure:

    {path/to/file}/
        progress.log
        {ecosystem-number}/
            output-summary.json
            snapshots/
                demography/
                    {stage}.feather
                    ...
                genotypes/
                    {stage}.feather
                    ...
                phenotypes/
                    {stage}.feather
            visor/
                genotypes.csv
                phenotypes.csv
                spectra/
                    age_at_birth.csv
                    age_at_end_of_sim.csv
                    age_at_genetic.csv
                    age_at_overshoot.csv
                    age_at_season_shift.csv
                    cumulative_ages.csv
    

    Detailed description of the content and format of output files can be found in the wiki.

Related articles

Authors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aegis-sim-2.3.0.tar.gz (534.7 kB view details)

Uploaded Source

Built Distribution

aegis_sim-2.3.0-py3-none-any.whl (537.3 kB view details)

Uploaded Python 3

File details

Details for the file aegis-sim-2.3.0.tar.gz.

File metadata

  • Download URL: aegis-sim-2.3.0.tar.gz
  • Upload date:
  • Size: 534.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.9

File hashes

Hashes for aegis-sim-2.3.0.tar.gz
Algorithm Hash digest
SHA256 9f5875ccca90ac6c45dc12801a2a750320a8b721525c382449cf896beb39649c
MD5 0832f0d5e87f87a12adef19d66c323a2
BLAKE2b-256 02e7a78bc3a2fe58c349a88e94c71ae7d4deb65cd3db13524ad9a84f4e4e4d8f

See more details on using hashes here.

Provenance

File details

Details for the file aegis_sim-2.3.0-py3-none-any.whl.

File metadata

  • Download URL: aegis_sim-2.3.0-py3-none-any.whl
  • Upload date:
  • Size: 537.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.9

File hashes

Hashes for aegis_sim-2.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c928d84cc9982f769c5212348663e55080c9397434fc93b39ad93522a2cd9cf9
MD5 d108682e6837f834886effd45f83800a
BLAKE2b-256 bd24755cb5b9170a65f2303629da194518b89edcdee37a7490f8679aa6d31d1a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page