Skip to main content

PPL tools for Aesara

Project description

Tests Status Coverage Join the chat at https://gitter.im/aesara-devs/aeppl

aeppl provides tools for a[e]PPL written in Aesara.

Features

  • Convert graphs containing Aesara RandomVariables into joint log-probability graphs

  • Transforms for RandomVariables that map constrained support spaces to unconstrained spaces (e.g. the extended real numbers), and a rewrite that automatically applies these transformations throughout a graph

  • Tools for traversing and transforming graphs containing RandomVariables

  • RandomVariable-aware pretty printing and LaTeX output

Examples

Using aeppl, one can create a joint log-probability graph from a graph containing Aesara RandomVariables:

import aesara
from aesara import tensor as at

from aeppl import joint_logprob, pprint


# A simple scale mixture model
S_rv = at.random.invgamma(0.5, 0.5)
Y_rv = at.random.normal(0.0, at.sqrt(S_rv))

# Compute the joint log-probability
logprob, (y, s) = joint_logprob(Y_rv, S_rv)

Log-probability graphs are standard Aesara graphs, so we can compute values with them:

logprob_fn = aesara.function([y, s], logprob)

logprob_fn(-0.5, 1.0)
# array(-2.46287705)

Graphs can also be pretty printed:

from aeppl import pprint, latex_pprint


# Print the original graph
print(pprint(Y_rv))
# b ~ invgamma(0.5, 0.5) in R, a ~ N(0.0, sqrt(b)**2) in R
# a

print(latex_pprint(Y_rv))
# \begin{equation}
#   \begin{gathered}
#     b \sim \operatorname{invgamma}\left(0.5, 0.5\right)\,  \in \mathbb{R}
#     \\
#     a \sim \operatorname{N}\left(0.0, {\sqrt{b}}^{2}\right)\,  \in \mathbb{R}
#   \end{gathered}
#   \\
#   a
# \end{equation}

# Simplify the graph so that it's easier to read
from aesara.graph.rewriting.utils import rewrite_graph
from aesara.tensor.rewriting.basic import topo_constant_folding


logprob = rewrite_graph(logprob, custom_rewrite=topo_constant_folding)


print(pprint(logprob))
# s in R, y in R
# (switch(s >= 0.0,
#         ((-0.9189385175704956 +
#           switch(s == 0, -inf, (-1.5 * log(s)))) - (0.5 / s)),
#         -inf) +
#  ((-0.9189385332046727 + (-0.5 * ((y / sqrt(s)) ** 2))) - log(sqrt(s))))

Joint log-probabilities can be computed for some terms that are derived from RandomVariables, as well:

# Create a switching model from a Bernoulli distributed index
Z_rv = at.random.normal([-100, 100], 1.0, name="Z")
I_rv = at.random.bernoulli(0.5, name="I")

M_rv = Z_rv[I_rv]
M_rv.name = "M"

# Compute the joint log-probability for the mixture
logprob, (m, z, i) = joint_logprob(M_rv, Z_rv, I_rv)


logprob = rewrite_graph(logprob, custom_rewrite=topo_constant_folding)

print(pprint(logprob))
# i in Z, m in R, a in Z
# (switch((0 <= i and i <= 1), -0.6931472, -inf) +
#  ((-0.9189385332046727 + (-0.5 * (((m - [-100  100][a]) / [1. 1.][a]) ** 2))) -
#   log([1. 1.][a])))

Installation

The latest release of aeppl can be installed from PyPI using pip:

pip install aeppl

The current development branch of aeppl can be installed from GitHub, also using pip:

pip install git+https://github.com/aesara-devs/aeppl

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aeppl-0.0.40.tar.gz (64.3 kB view details)

Uploaded Source

Built Distribution

aeppl-0.0.40-py3-none-any.whl (53.1 kB view details)

Uploaded Python 3

File details

Details for the file aeppl-0.0.40.tar.gz.

File metadata

  • Download URL: aeppl-0.0.40.tar.gz
  • Upload date:
  • Size: 64.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for aeppl-0.0.40.tar.gz
Algorithm Hash digest
SHA256 8e143e9e6730ae2d4da498a3b791344eee65a9c8fdffa243ff742f9ea9952ddb
MD5 a82c7ba38f17cb779b8adabc1131a79d
BLAKE2b-256 dfe48e7f119b781dcb6e7be9e07c054bbde6f5079937c950489d0f8974c012de

See more details on using hashes here.

File details

Details for the file aeppl-0.0.40-py3-none-any.whl.

File metadata

  • Download URL: aeppl-0.0.40-py3-none-any.whl
  • Upload date:
  • Size: 53.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for aeppl-0.0.40-py3-none-any.whl
Algorithm Hash digest
SHA256 d6bc7fcd1f0d587d7263dc5aca23ba976cf154556a9e8f0565f6ffa4deb2f11c
MD5 1778aa2eb6efc41b487da30972446c4a
BLAKE2b-256 12361bac35f27e094fd4dca6dfd6e10e4882a6404a3ca1e176fc48a9c94b5396

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page