Skip to main content

Simple implementation of the papar Adaptive Feature-Space Conformal Transformation for Imbalanced-Data Learning

Project description

afc-imbalanced-learning

A simple implementation of Adaptive Feature-Space Conformal Transformationfor Imbalanced-Data Learning.

Core concept

In [1], the idea of inceasing the separability (margin) of classes for kernel SVM, can be achieved by magnify the spatial resolution in the region around the boundary in the hyperspace, the non-linear serface where $\textbf{x}$ has been already mapped to $\phi(\textbf{x})$ using kernel tricks.

Given $K(\textbf{x}, \textbf{x}') = \langle \phi(\textbf{x}), \phi(\textbf{x}')\rangle$ is a kernel function corresponding to the non-linear mapping function $\phi(\textbf{x})$ for a kernel SVM. We can employ a conformal transformation of kernel:

$$ \begin{aligned} \tilde{K}(\textbf{x}, \textbf{x}') = D(\textbf{x})D(\textbf{x}')K(\textbf{x}, \textbf{x}') \end{aligned} $$

to enlarge the distance near the boundary in non-linear surface in higher dimension by choosing appropriate $D(\textbf{x})$ that has a high value when $\textbf{x}$ is close to the boundary and small when it is far away from the boundary.

In [1], it has been suggested that $D(\textbf{x})$ can be chosen as:

$$ \begin{aligned} D(\textbf{x}) = \sum_{\textbf{x}_k \epsilon SV} e^{ -\frac{1}{\tau_k^{2}}||\textbf{x} - \textbf{x}_k||^{2}} \end{aligned} $$

where

$$ \begin{aligned} \tau_k^{2} = \frac{1}{M} \sum_{\textbf{x}{s} \epsilon SV{k}}{||\textbf{x}_{s} - \textbf{x}_k||^{2}} \end{aligned} $$

where $SV_{k}$ denotes a set of $M$ support vectors $\textbf{x}_{s}$ that are nearest to support vector $\textbf{x}_k$

In this implementation, we use the $\tau_k^{2}$ proposed in [2]:

$$ \begin{aligned} \tau_k^{2} = AVG_{\textbf{x}s \epsilon {\textbf{x}{s} \epsilon SV | \ || \phi{(\textbf{x}_s)} - \phi{(\textbf{x}_k)} ||^2 < M, \ y_s \ne y_k, }} (|| \phi{(\textbf{x}_s)} - \phi{(\textbf{x}_k)} ||^2) \end{aligned} $$

where $M$ is the mean distance squared (in hyperspace) of the nearest and the farthest support vector from $\phi(\textbf{x}_k)$. It has been mentioned in [2] that by setting $\tau_k$ like this will take into account the spatial distribution of the support vectors in hyperspace.

Note that given kernel function, $K(\textbf{x}, \textbf{x}')$ is known but the mapping function $\phi(\textbf{x})$ is unknown, we can still calculate the distance in hyperspace using Kernel trick

$$ \begin{aligned} | \phi{(\textbf{x}_s)} - \phi{(\textbf{x}_k)} ||^2 = K(\textbf{x}_s, \textbf{x}_s) + K(\textbf{x}_k, \textbf{x}k) - 2K(\textbf{x}{s}, \textbf{x}_k) \end{aligned} $$

Dealing with Imbalaned
It has been stated in [2] that the $\tau_k^{2}$ will be scaled with a larger factor $\eta_p$ if $\textbf{x}_k$ belong to minority class and will be scaled down with a factor $\eta_n$ to address imbalance issue. The paper suggest that we should choose $\eta_p$ and $\eta_n$ proportional to the skew of support vectors. In this version of implementation, I set $\eta_p$ = 1 and $\eta_n = \frac{|SV^{+}|}{|SV^{-}|}$ for now.

Example Usage

from afc_imbalanced_learning import AFSCTSvm

afc_svm = AFSCTSvm()
afc_svm.fit(X_train, y_train)
y_pred = afc_svm.predict(X_test)

what .fit(X_train, y_train) does is it train kernel svm with laplacian kernel $K(\textbf{x}, \textbf{x}') = e^{-\gamma|\textbf{x} - \textbf{x}'|}$ as used in [2], then it estimates the location of boundary by extracting support vectors and it then calculate $\tau_k$ for every support vectors and then calculate $D(\textbf{x})$ to use for conformal transformation where we'll obtain $\tilde{K}(\textbf{x}, \textbf{x})$ to train our new SVM. We'll then use the new improved Kernel SVM to predict when .predict is called.

you can use your own custom kernel function by parse it to kernel parameter

from sklearn.metrics.pairwise import rbf_kernel
afc_svm = AFSCTSvm(kernel=rbf_kernel)
afc_svm.fit(X_train, y_train)

Note that in this implementation, cost-sensitive svm will be used by default

References

[1] Wu, Si and Shun‐ichi Amari. “Conformal Transformation of Kernel Functions: A Data-Dependent Way to Improve Support Vector Machine Classifiers.” Neural Processing Letters 15 (2002): 59-67.
[2] Wu, Gang & Chang, Edward. (2003). Adaptive Feature-Space Conformal Transformation for Imbalanced-Data Learning. Proceedings, Twentieth International Conference on Machine Learning. 2. 816-823.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

afc_svm_imbalanced_learning-0.1.1.tar.gz (5.3 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file afc_svm_imbalanced_learning-0.1.1.tar.gz.

File metadata

File hashes

Hashes for afc_svm_imbalanced_learning-0.1.1.tar.gz
Algorithm Hash digest
SHA256 6a8d2a1ef06f177f07d3f322dc810aeae0ae5689c1d8fa00e4e154c8a171babc
MD5 62963104d95716de7f1778fa39f286f5
BLAKE2b-256 5ed5f5d4edcc4aa1298cf7163f174bf10c71e1a7d525e68b5aee4a5f5dabe625

See more details on using hashes here.

File details

Details for the file afc_svm_imbalanced_learning-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for afc_svm_imbalanced_learning-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 acd5cbc3590939de2bba0159e6ad8c68e67e8deae562a80137ca025d8a4b4ec6
MD5 fd88113fe534e0e2c6aaa027e67e98ba
BLAKE2b-256 afd8e12c1d08ae3757c23daecb9b578f74865888e60d9412e40bc1723bac09ae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page