Skip to main content

Simple implementation of the papar Adaptive Feature-Space Conformal Transformation for Imbalanced-Data Learning

Project description

Adaptive Feature-Space Conformal Transformation for Imbalanced-Data Learning for Kernel SVM

A simple implementation of Adaptive Feature-Space Conformal Transformationfor any kernel SVM proposed in [2]

Core concept

In [1], the idea of inceasing the separability (margin) of classes for kernel SVM, can be achieved by magnify the spatial resolution in the region around the boundary in the hyperspace, the non-linear serface where $\textbf{x}$ has been already mapped to $\phi(\textbf{x})$ using kernel tricks.

Given $K(\textbf{x}, \textbf{x}') = \langle \phi(\textbf{x}), \phi(\textbf{x}')\rangle$ is a kernel function corresponding to the non-linear mapping function $\phi(\textbf{x})$ for a kernel SVM. We can employ a conformal transformation of kernel:

$$ \begin{aligned} \tilde{K}(\textbf{x}, \textbf{x}') = D(\textbf{x})D(\textbf{x}')K(\textbf{x}, \textbf{x}') \end{aligned} $$

to enlarge the distance near the boundary in non-linear surface in higher dimension by choosing appropriate $D(\textbf{x})$ that has a high value when $\textbf{x}$ is close to the boundary and small when it is far away from the boundary.

In [1], it has been suggested that $D(\textbf{x})$ can be chosen as:

$$ \begin{aligned} D(\textbf{x}) = \sum_{\textbf{x}_k \epsilon SV} e^{ -\frac{1}{\tau_k^{2}}||\textbf{x} - \textbf{x}_k||^{2}} \end{aligned} $$

where

$$ \begin{aligned} \tau_k^{2} = \frac{1}{M} \sum_{\textbf{x}_s \epsilon SV_k} || \textbf{x}_s - \textbf{x}_k||^{2} || \end{aligned} $$

where $SV_{k}$ denotes a set of $M$ support vectors $\textbf{x}_{s}$ that are nearest to support vector $\textbf{x}_k$

In this implementation, we use the $\tau_k^{2}$ proposed in [2]:

$$ \begin{aligned} \tau_k^{2} = AVG_{\textbf{x}_s \epsilon {\textbf{x}_s \epsilon SV | \ || \phi{(\textbf{x}_s)} - \phi{(\textbf{x}_k)} ||^2 < M, \ y_s \ne y_k, }} (|| \phi{(\textbf{x}_s)} - \phi{(\textbf{x}_k)} ||^2) \end{aligned} $$

where $M$ is the mean distance squared (in hyperspace) of the nearest and the farthest support vector from $\phi(\textbf{x}_k)$. It has been mentioned in [2] that by setting $\tau_k$ like this will take into account the spatial distribution of the support vectors in hyperspace.

Note that given kernel function, $K(\textbf{x}, \textbf{x}')$ is known but the mapping function $\phi(\textbf{x})$ is unknown, we can still calculate the distance in hyperspace using Kernel trick

$$ \begin{aligned} | \phi{(\textbf{x}_s)} - \phi{(\textbf{x}_k)} ||^2 = K(\textbf{x}_s, \textbf{x}_s) + K(\textbf{x}_k, \textbf{x}_k) - 2K(\textbf{x}_s, \textbf{x}_k) \end{aligned} $$

Dealing with Imbalaned
It has been stated in [2] that the $\tau_k^{2}$ will be scaled with a larger factor $\eta_p$ if $\textbf{x}_k$ belong to minority class and will be scaled down with a factor $\eta_n$ to address imbalance issue. The paper suggest that we should choose $\eta_p$ and $\eta_n$ proportional to the skew of support vectors. In this version of implementation, I set $\eta_p$ = 1 and $\eta_n = \frac{|SV^{+}|}{|SV^{-}|}$ for now.

Example Usage

installation

pip install afc-svm-imbalanced-learning

Usage

from afc_imbalanced_learning import AFSCTSvm

afc_svm = AFSCTSvm()
afc_svm.fit(X_train, y_train)
y_pred = afc_svm.predict(X_test)

what .fit(X_train, y_train) does is it train kernel svm with laplacian kernel $K(\textbf{x}, \textbf{x}') = e^{-\gamma|\textbf{x} - \textbf{x}'|}$ as used in [2], then it estimates the location of boundary by extracting support vectors and it then calculate $\tau_k$ for every support vectors and then calculate $D(\textbf{x})$ to use for conformal transformation where we'll obtain $\tilde{K}(\textbf{x}, \textbf{x})$ to train our new SVM. We'll then use the new improved Kernel SVM to predict when .predict is called.

Custom initial kernel
you can use your own custom kernel function by parse it to kernel parameter

from sklearn.metrics.pairwise import rbf_kernel
afc_svm = AFSCTSvm(kernel=rbf_kernel)
afc_svm.fit(X_train, y_train)

Note that in this implementation, cost-sensitive svm will be used by default

References

[1] Wu, Si and Shun‐ichi Amari. “Conformal Transformation of Kernel Functions: A Data-Dependent Way to Improve Support Vector Machine Classifiers.” Neural Processing Letters 15 (2002): 59-67.
[2] Wu, Gang & Chang, Edward. (2003). Adaptive Feature-Space Conformal Transformation for Imbalanced-Data Learning. Proceedings, Twentieth International Conference on Machine Learning. 2. 816-823.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

afc_svm_imbalanced_learning-0.6.0.tar.gz (6.3 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file afc_svm_imbalanced_learning-0.6.0.tar.gz.

File metadata

File hashes

Hashes for afc_svm_imbalanced_learning-0.6.0.tar.gz
Algorithm Hash digest
SHA256 2dfe8483d2e1bc7817ab0032540e8b8ae30f9c305f05064c98e6ba2095a15bea
MD5 7a46e5d80f7fad69e3d12bd112b0120f
BLAKE2b-256 85c0fd331faa3423c305cfff241870782bae5e6229c8a8c62cd5d615630d0910

See more details on using hashes here.

File details

Details for the file afc_svm_imbalanced_learning-0.6.0-py3-none-any.whl.

File metadata

File hashes

Hashes for afc_svm_imbalanced_learning-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 43c68bf33a4e4ad305c07ce29168a555fdcf244b7be76dca0f8f494c6fbc6346
MD5 5b5cb15613df95fc8a74b8b6481b2be1
BLAKE2b-256 d561ba6d7779c036c776e7c475ec95fdba8092f871eb2329f6971aa10fb3145c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page